ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainty Prediction for Machine Learning Models of Material Properties

130   0   0.0 ( 0 )
 نشر من قبل Kamal Choudhary
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Uncertainty quantification in Artificial Intelligence (AI)-based predictions of material properties is of immense importance for the success and reliability of AI applications in material science. While confidence intervals are commonly reported for machine learning (ML) models, prediction intervals, i.e., the evaluation of the uncertainty on each prediction, are seldomly available. In this work we compare 3 different approaches to obtain such individual uncertainty, testing them on 12 ML-physical properties. Specifically, we investigated using the Quantile loss function, machine learning the prediction intervals directly and using Gaussian Processes. We identify each approachs advantages and disadvantages and end up slightly favoring the modeling of the individual uncertainties directly, as it is the easiest to fit and, in most cases, minimizes over-and under-estimation of the predicted errors. All data for training and testing were taken from the publicly available JARVIS-DFT database, and the codes developed for computing the prediction intervals are available through JARVIS-Tools.



قيم البحث

اقرأ أيضاً

In this work, we discuss use of machine learning techniques for rapid prediction of detonation properties including explosive energy, detonation velocity, and detonation pressure. Further, analysis is applied to individual molecules in order to explo re the contribution of bonding motifs to these properties. Feature descriptors evaluated include Morgan fingerprints, E-state vectors, a custom sum over bonds descriptor, and coulomb matrices. Algorithms discussed include kernel ridge regression, least absolute shrinkage and selection operator (LASSO) regression, Gaussian process regression, and the multi-layer perceptron (a neural network). Effects of regularization, kernel selection, network parameters, and dimensionality reduction are discussed. We determine that even when using a small training set, non-linear regression methods may create models within a useful error tolerance for screening of materials.
319 - Weiwei Jiang , Jiayun Luo 2021
Drought is a serious natural disaster that has a long duration and a wide range of influence. To decrease the drought-caused losses, drought prediction is the basis of making the corresponding drought prevention and disaster reduction measures. While this problem has been studied in the literature, it remains unknown whether drought can be precisely predicted or not with machine learning models using weather data. To answer this question, a real-world public dataset is leveraged in this study and different drought levels are predicted using the last 90 days of 18 meteorological indicators as the predictors. In a comprehensive approach, 16 machine learning models and 16 deep learning models are evaluated and compared. The results show no single model can achieve the best performance for all evaluation metrics simultaneously, which indicates the drought prediction problem is still challenging. As benchmarks for further studies, the code and results are publicly available in a Github repository.
Material scientists are increasingly adopting the use of machine learning (ML) for making potentially important decisions, such as, discovery, development, optimization, synthesis and characterization of materials. However, despite MLs impressive per formance in commercial applications, several unique challenges exist when applying ML in materials science applications. In such a context, the contributions of this work are twofold. First, we identify common pitfalls of existing ML techniques when learning from underrepresented/imbalanced material data. Specifically, we show that with imbalanced data, standard methods for assessing quality of ML models break down and lead to misleading conclusions. Furthermore, we found that the models own confidence score cannot be trusted and model introspection methods (using simpler models) do not help as they result in loss of predictive performance (reliability-explainability trade-off). Second, to overcome these challenges, we propose a general-purpose explainable and reliable machine-learning framework. Specifically, we propose a novel pipeline that employs an ensemble of simpler models to reliably predict material properties. We also propose a transfer learning technique and show that the performance loss due to models simplicity can be overcome by exploiting correlations among different material properties. A new evaluation metric and a trust score to better quantify the confidence in the predictions are also proposed. To improve the interpretability, we add a rationale generator component to our framework which provides both model-level and decision-level explanations. Finally, we demonstrate the versatility of our technique on two applications: 1) predicting properties of crystalline compounds, and 2) identifying novel potentially stable solar cell materials.
Generating high quality uncertainty estimates for sequential regression, particularly deep recurrent networks, remains a challenging and open problem. Existing approaches often make restrictive assumptions (such as stationarity) yet still perform poo rly in practice, particularly in presence of real world non-stationary signals and drift. This paper describes a flexible method that can generate symmetric and asymmetric uncertainty estimates, makes no assumptions about stationarity, and outperforms competitive baselines on both drift and non drift scenarios. This work helps make sequential regression more effective and practical for use in real-world applications, and is a powerful new addition to the modeling toolbox for sequential uncertainty quantification in general.
Machine learning for building energy prediction has exploded in popularity in recent years, yet understanding its limitations and potential for improvement are lacking. The ASHRAE Great Energy Predictor III (GEPIII) Kaggle competition was the largest building energy meter machine learning competition ever held with 4,370 participants who submitted 39,403 predictions. The test data set included two years of hourly electricity, hot water, chilled water, and steam readings from 2,380 meters in 1,448 buildings at 16 locations. This paper analyzes the various sources and types of residual model error from an aggregation of the competitions top 50 solutions. This analysis reveals the limitations for machine learning using the standard model inputs of historical meter, weather, and basic building metadata. The types of error are classified according to the amount of time errors occur in each instance, abrupt versus gradual behavior, the magnitude of error, and whether the error existed on single buildings or several buildings at once from a single location. The results show machine learning models have errors within a range of acceptability on 79.1% of the test data. Lower magnitude model errors occur in 16.1% of the test data. These discrepancies can likely be addressed through additional training data sources or innovations in machine learning. Higher magnitude errors occur in 4.8% of the test data and are unlikely to be accurately predicted regardless of innovation. There is a diversity of error behavior depending on the energy meter type (electricity prediction models have unacceptable error in under 10% of test data, while hot water is over 60%) and building use type (public service less than 14%, while technology/science is just over 46%).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا