ﻻ يوجد ملخص باللغة العربية
Radiation damage to the steel material of reactor pressure vessels is a major threat to the nuclear reactor safety. It is caused by the metal atom cascade collision, initialized when the atoms are struck by a high-energy neutron. The paper presents MISA-MD, a new implementation of molecular dynamics, to simulate such cascade collision with EAM potential. MISA-MD realizes (1) a hash-based data structure to efficiently store an atom and find its neighbors, and (2) several acceleration and optimization strategies based on SW26010 processor of Sunway Taihulight supercomputer, including an efficient potential table storage and interpolation method, a coloring method to avoid write conflicts, and double-buffer and data reuse strategies. The experimental results demonstrated that MISA-MD has good accuracy and scalability, and obtains a parallel efficiency of over 79% in an 655-billion-atom system. Compared with a state-of-the-art MD program LAMMPS, MISA-MD requires less memory usage and achieves better computational performance.
Boson sampling is expected to be one of an important milestones that will demonstrate quantum supremacy. The present work establishes the benchmarking of Gaussian boson sampling (GBS) with threshold detection based on the Sunway TaihuLight supercompu
High performance computing (HPC) is a powerful tool to accelerate the Kohn-Sham density functional theory (KS-DFT) calculations on modern heterogeneous supercomputers. Here, we describe a massively extreme-scale parallel and portable implementation o
Many eigensolvers such as ARPACK and Anasazi have been developed to compute eigenvalues of a large sparse matrix. These eigensolvers are limited by the capacity of RAM. They run in memory of a single machine for smaller eigenvalue problems and requir
We suggest a theoretical description of the force-induced translocation dynamics of a polymer chain through a nanopore. Our consideration is based on the tensile (Pincus) blob picture of a pulled chain and the notion of propagating front of tensile f
Quantum many-body systems (QMBs) are some of the most challenging physical systems to simulate numerically. Methods involving approximations for tensor network (TN) contractions have proven to be viable alternatives to algorithms such as quantum Mont