ﻻ يوجد ملخص باللغة العربية
We study the level-spacing statistics for non-interacting Hamiltonians defined on the two-dimensional quasiperiodic Ammann--Beenker (AB) tiling. When applying the numerical procedure of unfolding, these spectral properties in each irreducible sector are known to be well-described by the universal Gaussian orthogonal random matrix ensemble. However, the validity and numerical stability of the unfolding procedure has occasionally been questioned due to the fractal self-similarity in the density of states for such quasiperiodic systems. Here, using the so-called $r$-value statistics for random matrices, $P(r)$, for which no unfolding is needed, we show that the Gaussian orthogonal ensemble again emerges as the most convincing level statistics for each irreducible sector. The results are extended to random-AB tilings where random flips of vertex connections lead to the irreducibility.
We numerically study the level statistics of the Gaussian $beta$ ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices $beta = 1,2,4$ to the continuous range $0 < beta < infty$. The Gaussian $beta$
We consider uniformly random lozenge tilings of simply connected polygons subject to a technical assumption on their limit shape. We show that the edge statistics around any point on the arctic boundary, that is not a cusp or tangency location, conve
We investigate the effect of the amount of disorder on the statistics of breaking bursts during the quasi-static fracture of heterogeneous materials. We consider a fiber bundle model where the strength of single fibers is sampled from a power law dis
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic pha
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exi