ﻻ يوجد ملخص باللغة العربية
We reconstruct the velocity field of incompressible flows given a finite set of measurements. For the spatial approximation, we introduce the Sparse Fourier divergence-free (SFdf) approximation based on a discrete $L^2$ projection. Within this physics-informed type of statistical learning framework, we adaptively build a sparse set of Fourier basis functions with corresponding coefficients by solving a sequence of minimization problems where the set of basis functions is augmented greedily at each optimization problem. We regularize our minimization problems with the seminorm of the fractional Sobolev space in a Tikhonov fashion. In the Fourier setting, the incompressibility (divergence-free) constraint becomes a finite set of linear algebraic equations. We couple our spatial approximation with the truncated Singular Value Decomposition (SVD) of the flow measurements for temporal compression. Our computational framework thus combines supervised and unsupervised learning techniques. We assess the capabilities of our method in various numerical examples arising in fluid mechanics.
We apply supervised machine learning techniques to a number of regression problems in fluid dynamics. Four machine learning architectures are examined in terms of their characteristics, accuracy, computational cost, and robustness for canonical flow
A two-fluid Discrete Boltzmann Model(DBM) for compressible flows based on Ellipsoidal Statistical Bhatnagar-Gross-Krook(ES-BGK) is presented. The model has flexible Prandtl number or specific heat ratio. Mathematically, the model is composed of two c
Common modal decomposition techniques for flowfield analysis, data-driven modeling and flow control, such as proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are usually performed in an Eulerian (fixed) frame of reference wi
In recent years, there have been a surge in applications of neural networks (NNs) in physical sciences. Although various algorithmic advances have been proposed, there are, thus far, limited number of studies that assess the interpretability of neura
We present theory and experiments demonstrating the existence of invariant manifolds that impede the motion of microswimmers in two-dimensional fluid flows. One-way barriers are apparent in a hyperbolic fluid flow that block the swimming of both smoo