ترغب بنشر مسار تعليمي؟ اضغط هنا

Do Gedankenexperiments compel quantization of gravity?

96   0   0.0 ( 0 )
 نشر من قبل Erik Rydving
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Whether gravity is quantized remains an open question. To shed light on this problem, various Gedankenexperiments have been proposed. One popular example is an interference experiment with a massive system that interacts gravitationally with another distant system, where an apparent paradox arises: even for space-like separation the outcome of the interference experiment depends on actions on the distant system, leading to a violation of either complementarity or no-signalling. A recent resolution shows that the paradox is avoided when quantizing gravitational radiation and including quantum fluctuations of the gravitational field. Here we show that the paradox in question can also be resolved without considering gravitational radiation, relying only on the Planck length as a limit on spatial resolution. Therefore, in contrast to conclusions previously drawn, we find that the necessity for a quantum field theory of gravity does not follow from so far considered Gedankenexperiments of this type. In addition, we point out that in the common realization of the setup the effects are governed by the mass octopole rather than the quadrupole. Our results highlight that no Gedankenexperiment to date compels a quantum field theory of gravity, in contrast to the electromagnetic case.



قيم البحث

اقرأ أيضاً

We outline, test, and apply a new scheme for nonpertubative analyses of quantized field systems in contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends itself for a generalization to full Quant um Gravity. We advocate the point of view that quantum field theories should be regularized by sequences of quasi-physical systems comprising a well defined number of the fields degrees of freedom. In dependence on this number, each system backreacts autonomously and self-consistently on the gravitational field. In this approach, the limit which removes the regularization automatically generates the physically correct spacetime geometry, i.e., the metric the quantum states of the field prefer to live in. We apply the scheme to a Gaussian scalar field on maximally symmetric spacetimes, thereby confronting it with the standard approaches. As an application, the results are used to elucidate the cosmological constant problem allegedly arising from the vacuum fluctuations of quantum matter fields. An explicit calculation shows that the problem disappears if the pertinent continuum limit is performed in the improved way advocated here. A further application concerns the thermodynamics of de Sitter space where the approach offers a natural interpretation of the micro-states that are counted by the Bekenstein-Hawking entropy.
De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual g auge group opens the way to the usual LQG quantization techniques. We recall the exemple of the LQG quantization of SU(2) CS theory with cylindrical space topology, which thus provides a complete LQG of a Lorentzian gravity model in 3-dimensional space-time.
We consider a closed region $R$ of 3d quantum space modeled by $SU(2)$ spin-networks. Using the concentration of measure phenomenon we prove that, whenever the ratio between the boundary $partial R$ and the bulk edges of the graph overcomes a finite threshold, the state of the boundary is always thermal, with an entropy proportional to its area. The emergence of a thermal state of the boundary can be traced back to a large amount of entanglement between boundary and bulk degrees of freedom. Using the dual geometric interpretation provided by loop quantum gravity, we interprete such phenomenon as a pre-geometric analogue of Thornes Hoop conjecture, at the core of the formation of a horizon in General Relativity.
We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute how the mass and mean wavelength of these solutions scale in t erms of the number of quanta in the coherent state. We then note that the classical relation between the ADM mass and the proper mass of the source naturally gives rise to a Generalised Uncertainty Principle for the size of the gravitational radius in the quantum theory. Consistency of the mass and wavelength scalings with this GUP requires the compactness remains at most of order one even for black holes, and the corpuscular predictions are thus recovered, with the quantised horizon area expressed in terms of the number of quanta in the coherent state. Our findings could be useful for analysing the classicalization of gravity in the presence of matter and the avoidance of singularities in the gravitational collapse of compact sources.
122 - Houri Ziaeepour 2020
So far none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here we outline preliminary result s for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on 3 well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; Universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has $SU(Nrightarrow infty) cong text{area preserving Diff.} (S_2)$ symmetry, which is parameterized by two angular variables. We show that in absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference - {it observer} - and another as {it clock}, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. Therefore, its quantization is meaningless. In this view, the Einstein equation presents the projection of quantum dynamics in the Hilbert space into its parameter space. Finite dimensional symmetries of elementary particles emerge as a consequence of symmetry breaking when the Universe is divided to subsystems/particles without having any implication for the infinite dimensional symmetry and its associated interaction percived as gravity. This explains why gravity is a universal force.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا