ترغب بنشر مسار تعليمي؟ اضغط هنا

Making a Quantum Universe: Symmetry and Gravity

123   0   0.0 ( 0 )
 نشر من قبل Houri Ziaeepour
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Houri Ziaeepour




اسأل ChatGPT حول البحث

So far none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here we outline preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on 3 well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; Universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has $SU(Nrightarrow infty) cong text{area preserving Diff.} (S_2)$ symmetry, which is parameterized by two angular variables. We show that in absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference - {it observer} - and another as {it clock}, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. Therefore, its quantization is meaningless. In this view, the Einstein equation presents the projection of quantum dynamics in the Hilbert space into its parameter space. Finite dimensional symmetries of elementary particles emerge as a consequence of symmetry breaking when the Universe is divided to subsystems/particles without having any implication for the infinite dimensional symmetry and its associated interaction percived as gravity. This explains why gravity is a universal force.

قيم البحث

اقرأ أيضاً

Quantum gravity of a brane-like Universe is formulated, and its Einstein limit is approached. Regge-Teitelboim embedding of Arnowitt-Deser-Misner formalism is carried out. Invoking a novel Lagrange multiplier, accompanying the lapse function and the shift vector, we derive the quadratic Hamiltonian and the corresponding bifurcated Wheeler-Dewitt-like equation. The inclusion of arbitrary matter resembles minimal coupling.
108 - Gerard t Hooft 1999
It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in elementary particle physics that we believe that certa
We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute how the mass and mean wavelength of these solutions scale in t erms of the number of quanta in the coherent state. We then note that the classical relation between the ADM mass and the proper mass of the source naturally gives rise to a Generalised Uncertainty Principle for the size of the gravitational radius in the quantum theory. Consistency of the mass and wavelength scalings with this GUP requires the compactness remains at most of order one even for black holes, and the corpuscular predictions are thus recovered, with the quantised horizon area expressed in terms of the number of quanta in the coherent state. Our findings could be useful for analysing the classicalization of gravity in the presence of matter and the avoidance of singularities in the gravitational collapse of compact sources.
In this work we ask how an Unruh-DeWitt (UD) detector with harmonic oscillator internal degrees of freedom $Q$ measuring an evolving quantum matter field $Phi(bm{x}, t)$ in an expanding universe with scale factor $a(t)$ responds. We investigate the d etectors response which contains non-Markovian information about the quantum field squeezed by the dynamical spacetime. The challenge is in the memory effects accumulated over the evolutionary history. We first consider a detector $W$, the `textsl{Witness}, which co-existed and evolved with the quantum field from the beginning. We derive a nonMarkovian quantum Langevin equation for the detectors $Q$ by integrating over the squeezed quantum field. The solution of this integro-differential equation would answer our question, in principle, but very challenging, in practice. Striking a compromise, we then ask, to what extent can a detector $D$ introduced at late times, called the `textsl{Detective}, decipher past memories. This situation corresponds to many cosmological experiments today probing specific stages in the past, such as COBE targeting activities at the surface of last scattering. Somewhat surprisingly we show that it is possible to retrieve to some degree certain global physical quantities, such as the resultant squeezing, particles created, quantum coherence and correlations. The reason is because the quantum field has all the fine-grained information from the beginning in how it was driven by the cosmic dynamics $a(t)$. How long the details of past history can persist in the quantum field depends on the memory time. The fact that a squeezed field cannot come to complete equilibrium under constant driving, as in an evolving spacetime, actually helps to retain the memory. We discuss interesting features and potentials of this `textit{archaeological} perspective toward cosmological issues.
We consider a closed region $R$ of 3d quantum space modeled by $SU(2)$ spin-networks. Using the concentration of measure phenomenon we prove that, whenever the ratio between the boundary $partial R$ and the bulk edges of the graph overcomes a finite threshold, the state of the boundary is always thermal, with an entropy proportional to its area. The emergence of a thermal state of the boundary can be traced back to a large amount of entanglement between boundary and bulk degrees of freedom. Using the dual geometric interpretation provided by loop quantum gravity, we interprete such phenomenon as a pre-geometric analogue of Thornes Hoop conjecture, at the core of the formation of a horizon in General Relativity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا