ﻻ يوجد ملخص باللغة العربية
Normalizing flows, which learn a distribution by transforming the data to samples from a Gaussian base distribution, have proven powerful density approximations. But their expressive power is limited by this choice of the base distribution. We, therefore, propose to generalize the base distribution to a more elaborate copula distribution to capture the properties of the target distribution more accurately. In a first empirical analysis, we demonstrate that this replacement can dramatically improve the vanilla normalizing flows in terms of flexibility, stability, and effectivity for heavy-tailed data. Our results suggest that the improvements are related to an increased local Lipschitz-stability of the learned flow.
Normalizing flows learn a diffeomorphic mapping between the target and base distribution, while the Jacobian determinant of that mapping forms another real-valued function. In this paper, we show that the Jacobian determinant mapping is unique for th
Efficient gradient computation of the Jacobian determinant term is a core problem in many machine learning settings, and especially so in the normalizing flow framework. Most proposed flow models therefore either restrict to a function class with eas
By chaining a sequence of differentiable invertible transformations, normalizing flows (NF) provide an expressive method of posterior approximation, exact density evaluation, and sampling. The trend in normalizing flow literature has been to devise d
This paper introduces a generative model equivariant to Euclidean symmetries: E(n) Equivariant Normalizing Flows (E-NFs). To construct E-NFs, we take the discriminative E(n) graph neural networks and integrate them as a differential equation to obtai
Normalizing flows are prominent deep generative models that provide tractable probability distributions and efficient density estimation. However, they are well known to fail while detecting Out-of-Distribution (OOD) inputs as they directly encode th