ﻻ يوجد ملخص باللغة العربية
We study the dynamics of flow-networks in porous media using a pore-network model. First, we consider a class of erosion dynamics assuming a constitutive law depending on flow rate, local velocities, or shear stress at the walls. We show that depending on the erosion law, the flow may become uniform and homogenized or become unstable and develop channels. By defining an order parameter capturing these different behaviors we show that a phase transition occurs depending on the erosion dynamics. Using a simple model, we identify quantitative criteria to distinguish these regimes and correctly predict the fate of the network, and discuss the experimental relevance of our result.
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for th
Extremely small amounts of surface-active contaminants are known to drastically modify the hydrodynamic response of the water-air interface. Surfactant concentrations as low as a few thousand molecules per square micron are sufficient to eventually i
When suspended particles are pushed by liquid flow through a constricted channel they might either pass the bottleneck without trouble or encounter a permanent clog that will stop them forever. However, they may also flow intermittently with great se
We present an experimental micro-model of drying porous media, based on microfluidic cells made of arrays of pillars on a regular grid, and complement these experiments with a matching two-dimensional pore-network model of drying. Disorder, or small-
Microfluidic technologies are commonly used for the manipulation of red blood cell (RBC) suspensions and analyses of flow-mediated biomechanics. To enhance the performance of microfluidic devices, understanding the dynamics of the suspensions process