ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary Migration

58   0   0.0 ( 0 )
 نشر من قبل John Papaloizou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.C.B. Papaloizou




اسأل ChatGPT حول البحث

Studies of planet migration derived from disc planet interactions began before the discovery of exoplanets. The potential importance of migration for determining orbital architectures being realised, the field received greater attention soon after the initial discoveries of exoplanets. Early studies based on very simple disc models indicated very fast migration times for low mass planets that raised questions about its relevance. However, more recent studies, made possible with improving resources, that considered improved physics and disc models revealed processes that could halt or reverse this migration. That in turn led to a focus on special regions in the disc where migration could be halted. In this way the migration of low mass planets could be reconciled with formation theories. In the case of giant planets which have a nonlinear interaction with the disc, the migration should be slower and coupled to the evolution of the disc. The latter needs to be considered more fully to make future progress in all cases. Here we are primarily concerned with processes where migration is connected with the presence of the protopolanetary disk. Migration may also be induced by disc-free gravitational interactions amongst planets or with binary companions. This is only briefly discussed here.

قيم البحث

اقرأ أيضاً

153 - Richard P. Nelson 2018
The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary dis ks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields.
Planetary systems are born in the disks of gas, dust and rocky fragments that surround newly formed stars. Solid content assembles into ever-larger rocky fragments that eventually become planetary embryos. These then continue their growth by accretin g leftover material in the disc. Concurrently, tidal effects in the disc cause a radial drift in the embryo orbits, a process known as migration. Fast inward migration is predicted by theory for embryos smaller than three to five Earth masses. With only inward migration, these embryos can only rarely become giant planets located at Earths distance from the Sun and beyond, in contrast with observations. Here we report that asymmetries in the temperature rise associated with accreting infalling material produce a force (which gives rise to an effect that we call heating torque) that counteracts inward migration. This provides a channel for the formation of giant planets and also explains the strong planet-metallicity correlation found between the incidence of giant planets and the heavy-element abundance of the host stars.
The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch of planetary system formation. We concentrate on a very well defined and intensively studied process of the disc-planet interaction leading to the planet migration. We focus on the dynamics of the systems in which low-mass planets are present. Particular attention is devoted to investigation of the role of resonant configurations. Our studies, apart from being complementary to the fast progress occurring just now in observing the whole variety of planetary systems and uncovering their structure and origin, can also constitute a valuable contribution in support of the missions planned to enhance the number of detected multiple systems.
A leading model for the origin of super-Earths proposes that planetary embryos migrate inward and pile up on close-in orbits. As large embryos are thought to preferentially form beyond the snow line, this naively predicts that most super-Earths shoul d be very water-rich. Here we show that the shortest-period planets formed in the migration model are often purely rocky. The inward migration of icy embryos through the terrestrial zone accelerates the growth of rocky planets via resonant shepherding. We illustrate this process with a simulation that provided a match to the Kepler-36 system of two planets on close orbits with very different densities. In the simulation, two super-Earths formed in a Kepler-36-like configuration; the inner planet was pure rock while the outer one was ice-rich. We conclude from a suite of simulations that the feeding zones of close-in super-Earths are likely to be broad and disconnected from their final orbital radii.
In the conventional view of type II migration, a giant planet migrates inward in the viscous velocity of the accretion disc in the so-call disc-dominate case. Recent hydrodynamic simulations, however, showed that planets migrate with velocities much faster than the viscous one in massive discs. Such fast migration cannot be explained by the conventional picture. Scardoni et al. (2020) has recently argued this new picture. By carrying out similar hydrodynamic simulations, they found that the migration velocity slows down with time and eventually reaches the prediction by the conventional theory. They interpreted the fast migration as an initial transient one and concluded that the conventional type II migration is realised after the transient phase. We show that the migration velocities obtained by Scardoni et al. (2020) are consistent with the previous simulations even in the transient phase that they proposed. We also find that the transient fast migration proposed by Scardoni et al. (2020) is well described by a new model of Kanagawa et al. (2018). The new model can appropriately describe significant inward migration during the initial transient phase that Scardoni et al. (2020) termed. Hence, we conclude that the time-variation of the transient migration velocity is due to the changes of the orbital radius of the planet and its background surface density during the migration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا