ﻻ يوجد ملخص باللغة العربية
The interaction between graphene and metals represents an important issue for the large-area preparation of graphene, graphene transfer and the contact quality in graphene devices. We demonstrate a simple method for estimating and manipulating the level of interaction between graphene and copper single crystals through heat treatment, at temperatures from 298K to 1073K. We performed an in-situ Raman spectroscopy showing Cu face-specific behavior of the overlying graphene during the heat treatment. On Cu(111) the interaction is consistent with theoretical predictions and remains stable, whereas on Cu(100) and Cu(110), the initially very weak interaction and charge transfer can be tuned by heating. Our results also suggest that graphene grown on Cu(100) and Cu(110) is detached from the copper substrate, thereby possibly enabling an easier graphene transfer process as compared to Cu (111).
Epitaxial graphene layers were grown on the C-face of 4H- and 6H-SiC using an argon-mediated growth process. Variations in growth temperature and pressure were found to dramatically affect the morphological properties of the layers. The presence of a
Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magneti
Disorder-induced magnetoresistance has been reported in a range of solid metals and semiconductors, however, the underlying physical mechanism is still under debate because it is difficult to experimentally control. Liquid metals, due to lack of long
We simulate the optical and electrical responses in gallium-doped graphene. Using density functional theory with a local density approximation, we simlutate the electronic band structure and show the effects of impurity doping (0-3.91%) in graphene o
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel