ﻻ يوجد ملخص باللغة العربية
Empirical trends in stellar X-ray and radio luminosities suggest that low mass ultracool dwarfs (UCDs) should not produce significant radio emission. Defying these expectations, strong non-thermal emission has been observed in a few UCDs in the 1-10 GHz range, with a variable component often attributed to global aurorae and a steady component attributed to other processes such as gyrosynchrotron emission. While both auroral and gyrosynchrotron emission peak near the critical frequency, only the latter radiation is expected to extend into millimeter wavelengths. We present ALMA 97.5 GHz and VLA 33 GHz observations of a small survey of 5 UCDs. LP 349-25, LSR J1835+3259, and NLTT 33370 were detected at 97.5 GHz, while LP 423-31 and LP 415-20 resulted in non-detections at 33 GHz. A significant flare was observed in NLTT 33370 that reached a peak flux of 4880 +/- 360 microJy, exceeding the quiescent flux by nearly an order of magnitude, and lasting 20 seconds. These ALMA observations show bright 97.5 GHz emission with spectral indices ranging from alpha = -0.76 to alpha = -0.29, suggestive of optically thin gyrosynchrotron emission. If such emission traces magnetic reconnection events, then this could have consequences for both UCD magnetic models and the atmospheric stability of planets in orbit around them. Overall, our results provide confirmation that gyrosynchrotron radiation in radio loud UCDs can remain detectable into the millimeter regime.
Recently unanticipated magnetic activity in ultracool dwarfs (UCDs, spectral classes later than M7) have emerged from a number of radio observations. The highly (up to 100%) circularly polarized nature and high brightness temperature of the emission
We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short time-scale in an atte
We report the detection of periodic (p = 1.96 hours) bursts of extremely bright, 100% circularly polarized, coherent radio emission from the M9 dwarf TVLM 513-46546. Simultaneous photometric monitoring observations have established this periodicity t
A number of fast-rotating ultra cool dwarfs (UCDs) emit pulsed coherent radiation, attributed to the electron cyclotron maser instability, a phenomenon that occurs in the solar system at planets with strong auroral emission. In this paper we examine
Recently, a number of ultracool dwarfs have been found to produce periodic radio bursts with high brightness temperature and polarization degree; the emission properties are similar to the auroral radio emissions of the magnetized planets of the Sola