ﻻ يوجد ملخص باللغة العربية
We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short time-scale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of electromagnetic waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70$ u_{rm pe}$ ($ u_{rm pe}$ is the electron plasma frequency) in the non-relativistic case and from 10 to 600$ u_{rm pe}$ in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.
A number of fast-rotating ultra cool dwarfs (UCDs) emit pulsed coherent radiation, attributed to the electron cyclotron maser instability, a phenomenon that occurs in the solar system at planets with strong auroral emission. In this paper we examine
Recently, a number of ultracool dwarfs have been found to produce periodic radio bursts with high brightness temperature and polarization degree; the emission properties are similar to the auroral radio emissions of the magnetized planets of the Sola
We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 incre
There have recently been detections of radio emission from low-mass stars, some of which are indicative of star-planet interactions. Motivated by these exciting new results, here we present stellar wind models for the active planet-hosting M dwarf AU
We consider the magnetic interaction of exoplanets orbiting M-dwarfs, calculating the expected Poynting flux carried upstream along Alfv{e}n wings to the central star. A region of emission analogous to the Io footprint observed in Jupiters aurora is