ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Neural Rendering for Image Hazing

108   0   0.0 ( 0 )
 نشر من قبل Boyun Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image hazing aims to render a hazy image from a given clean one, which could be applied to a variety of practical applications such as gaming, filming, photographic filtering, and image dehazing. To generate plausible haze, we study two less-touched but challenging problems in hazy image rendering, namely, i) how to estimate the transmission map from a single image without auxiliary information, and ii) how to adaptively learn the airlight from exemplars, i.e., unpaired real hazy images. To this end, we propose a neural rendering method for image hazing, dubbed as HazeGEN. To be specific, HazeGEN is a knowledge-driven neural network which estimates the transmission map by leveraging a new prior, i.e., there exists the structure similarity (e.g., contour and luminance) between the transmission map and the input clean image. To adaptively learn the airlight, we build a neural module based on another new prior, i.e., the rendered hazy image and the exemplar are similar in the airlight distribution. To the best of our knowledge, this could be the first attempt to deeply rendering hazy images in an unsupervised fashion. Comparing with existing haze generation methods, HazeGEN renders the hazy images in an unsupervised, learnable, and controllable manner, thus avoiding the labor-intensive efforts in paired data collection and the domain-shift issue in haze generation. Extensive experiments show the promising performance of our method comparing with some baselines in both qualitative and quantitative comparisons. The code will be released on GitHub after acceptance.

قيم البحث

اقرأ أيضاً

We present a new neural representation, called Neural Ray (NeuRay), for the novel view synthesis (NVS) task with multi-view images as input. Existing neural scene representations for solving the NVS problem, such as NeRF, cannot generalize to new sce nes and take an excessively long time on training on each new scene from scratch. The other subsequent neural rendering methods based on stereo matching, such as PixelNeRF, SRF and IBRNet are designed to generalize to unseen scenes but suffer from view inconsistency in complex scenes with self-occlusions. To address these issues, our NeuRay method represents every scene by encoding the visibility of rays associated with the input views. This neural representation can efficiently be initialized from depths estimated by external MVS methods, which is able to generalize to new scenes and achieves satisfactory rendering images without any training on the scene. Then, the initialized NeuRay can be further optimized on every scene with little training timing to enforce spatial coherence to ensure view consistency in the presence of severe self-occlusion. Experiments demonstrate that NeuRay can quickly generate high-quality novel view images of unseen scenes with little finetuning and can handle complex scenes with severe self-occlusions which previous methods struggle with.
Differentiable rendering has paved the way to training neural networks to perform inverse graphics tasks such as predicting 3D geometry from monocular photographs. To train high performing models, most of the current approaches rely on multi-view ima gery which are not readily available in practice. Recent Generative Adversarial Networks (GANs) that synthesize images, in contrast, seem to acquire 3D knowledge implicitly during training: object viewpoints can be manipulated by simply manipulating the latent codes. However, these latent codes often lack further physical interpretation and thus GANs cannot easily be inverted to perform explicit 3D reasoning. In this paper, we aim to extract and disentangle 3D knowledge learned by generative models by utilizing differentiable renderers. Key to our approach is to exploit GANs as a multi-view data generator to train an inverse graphics network using an off-the-shelf differentiable renderer, and the trained inverse graphics network as a teacher to disentangle the GANs latent code into interpretable 3D properties. The entire architecture is trained iteratively using cycle consistency losses. We show that our approach significantly outperforms state-of-the-art inverse graphics networks trained on existing datasets, both quantitatively and via user studies. We further showcase the disentangled GAN as a controllable 3D neural renderer, complementing traditional graphics renderers.
We present GANcraft, an unsupervised neural rendering framework for generating photorealistic images of large 3D block worlds such as those created in Minecraft. Our method takes a semantic block world as input, where each block is assigned a semanti c label such as dirt, grass, or water. We represent the world as a continuous volumetric function and train our model to render view-consistent photorealistic images for a user-controlled camera. In the absence of paired ground truth real images for the block world, we devise a training technique based on pseudo-ground truth and adversarial training. This stands in contrast to prior work on neural rendering for view synthesis, which requires ground truth images to estimate scene geometry and view-dependent appearance. In addition to camera trajectory, GANcraft allows user control over both scene semantics and output style. Experimental results with comparison to strong baselines show the effectiveness of GANcraft on this novel task of photorealistic 3D block world synthesis. The project website is available at https://nvlabs.github.io/GANcraft/ .
Human re-rendering from a single image is a starkly under-constrained problem, and state-of-the-art algorithms often exhibit undesired artefacts, such as over-smoothing, unrealistic distortions of the body parts and garments, or implausible changes o f the texture. To address these challenges, we propose a new method for neural re-rendering of a human under a novel user-defined pose and viewpoint, given one input image. Our algorithm represents body pose and shape as a parametric mesh which can be reconstructed from a single image and easily reposed. Instead of a colour-based UV texture map, our approach further employs a learned high-dimensional UV feature map to encode appearance. This rich implicit representation captures detailed appearance variation across poses, viewpoints, person identities and clothing styles better than learned colour texture maps. The body model with the rendered feature maps is fed through a neural image-translation network that creates the final rendered colour image. The above components are combined in an end-to-end-trained neural network architecture that takes as input a source person image, and images of the parametric body model in the source pose and desired target pose. Experimental evaluation demonstrates that our approach produces higher quality single image re-rendering results than existing methods.
In this paper, we propose a generic neural-based hair rendering pipeline that can synthesize photo-realistic images from virtual 3D hair models. Unlike existing supervised translation methods that require model-level similarity to preserve consistent structure representation for both real images and fake renderings, our method adopts an unsupervised solution to work on arbitrary hair models. The key component of our method is a shared latent space to encode appearance-invariant structure information of both domains, which generates realistic renderings conditioned by extra appearance inputs. This is achieved by domain-specific pre-disentangled structure representation, partially shared domain encoder layers and a structure discriminator. We also propose a simple yet effective temporal conditioning method to enforce consistency for video sequence generation. We demonstrate the superiority of our method by testing it on a large number of portraits and comparing it with alternative baselines and state-of-the-art unsupervised image translation methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا