ﻻ يوجد ملخص باللغة العربية
We consider QCD radiative corrections to the production of four charged leptons in hadron collisions. We present the computation of the next-to-leading order QCD corrections to the loop-induced gluon fusion contribution. Our predictions include, for the first time, also the quark-gluon partonic channels. The computed corrections, which are formally of ${cal O}(alpha_{rm s}^3)$, turn out to increase the loop-induced Born-level result by an amount ranging from 75% to 71% as $sqrt{s}$ ranges from 8 to 13 TeV. We combine our result with state-of-the-art NNLO corrections to the quark annihilation channel, and present updated predictions for fiducial cross sections and distributions for this process.
We compute the NLO QCD corrections to the loop-induced gluon fusion contribution in $W^+W^-$ production at the LHC. We consider the full leptonic process $ppto ell^+ell^{prime, -} u_{ell}{bar u}_{ell^prime}+X$, by including resonant and non-resonant
Measuring the polarization of electroweak bosons at the LHC allows for important tests of the electroweak-symmetry-breaking mechanism that is realized in nature. Therefore, precise Standard Model predictions are needed for the production of polarized
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new p
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leadi
We present the first calculation of the full next-to-leading-order electroweak and QCD corrections for vector-boson scattering (VBS) into a pair of Z bosons at the LHC. We consider specifically the process ${rm ppto e^{+}e^{-}mu^{+}mu^{-}jj}+X$ at or