ترغب بنشر مسار تعليمي؟ اضغط هنا

$ZZ$ production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel

72   0   0.0 ( 0 )
 نشر من قبل Stefan Kallweit
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider QCD radiative corrections to the production of four charged leptons in hadron collisions. We present the computation of the next-to-leading order QCD corrections to the loop-induced gluon fusion contribution. Our predictions include, for the first time, also the quark-gluon partonic channels. The computed corrections, which are formally of ${cal O}(alpha_{rm s}^3)$, turn out to increase the loop-induced Born-level result by an amount ranging from 75% to 71% as $sqrt{s}$ ranges from 8 to 13 TeV. We combine our result with state-of-the-art NNLO corrections to the quark annihilation channel, and present updated predictions for fiducial cross sections and distributions for this process.



قيم البحث

اقرأ أيضاً

We compute the NLO QCD corrections to the loop-induced gluon fusion contribution in $W^+W^-$ production at the LHC. We consider the full leptonic process $ppto ell^+ell^{prime, -} u_{ell}{bar u}_{ell^prime}+X$, by including resonant and non-resonant diagrams, spin correlations and off-shell effects. Quark-gluon partonic channels are included for the first time in the calculation, and our results are combined with NNLO predictions to the quark annihilation channel at the fully differential level. The computed corrections, which are formally of ${cal O}(alpha_{mathrm{S}}^3)$, increase the NNLO cross section by only about 2%, but have an impact on the shapes of kinematical distributions, in part due to the jet veto, which is usually applied to reduce the top-quark background. Our results, supplemented with NLO EW effects, provide the most advanced fixed-order predictions available to date for this process, and are compared with differential ATLAS data at $sqrt{s}=$ 13 TeV.
Measuring the polarization of electroweak bosons at the LHC allows for important tests of the electroweak-symmetry-breaking mechanism that is realized in nature. Therefore, precise Standard Model predictions are needed for the production of polarized bosons in the presence of realistic kinematic selections. We formulate a method for the calculation of polarized cross-sections at NLO that relies on the pole approximation and the separation of polarized matrix elements at the amplitude level. In this framework, we compute NLO-accurate cross-sections for the production of two polarized Z bosons at the LHC, including for the first time NLO EW corrections and combining them with NLO QCD corrections and contributions from the gluon-induced process.
196 - T. Binoth , T. Gleisberg , S. Karg 2009
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new p hysics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leadi ng top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
We present the first calculation of the full next-to-leading-order electroweak and QCD corrections for vector-boson scattering (VBS) into a pair of Z bosons at the LHC. We consider specifically the process ${rm ppto e^{+}e^{-}mu^{+}mu^{-}jj}+X$ at or ders $mathcal{O}(alpha^7)$ and $mathcal{O}(alpha_salpha^6)$ and take all off-shell and interference contributions into account. Owing to the presence of enhanced Sudakov logarithms, the electroweak corrections amount to $-16%$ of the leading-order electroweak fiducial cross section and induce significant shape distortions of differential distributions. The QCD corrections on the other hand are larger ($+24%$) than typical QCD corrections in VBS. This originates from considering the full computation including tri-boson contributions in a rather inclusive phase space. We also provide a leading-order analysis of all contributions to the cross section for ${rm pp to e^{+}e^{-}mu^{+}mu^{-}jj}+X$ in a realistic setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا