ترغب بنشر مسار تعليمي؟ اضغط هنا

ZR-2021VG: Zero-Resource Speech Challenge, Visually-Grounded Language Modelling track, 2021 edition

243   0   0.0 ( 0 )
 نشر من قبل Bertrand Higy
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the visually-grounded language modelling track that was introduced in the Zero-Resource Speech challenge, 2021 edition, 2nd round. We motivate the new track and discuss participation rules in detail. We also present the two baseline systems that were developed for this track.

قيم البحث

اقرأ أيضاً

Visually-grounded models of spoken language understanding extract semantic information directly from speech, without relying on transcriptions. This is useful for low-resource languages, where transcriptions can be expensive or impossible to obtain. Recent work showed that these models can be improved if transcriptions are available at training time. However, it is not clear how an end-to-end approach compares to a traditional pipeline-based approach when one has access to transcriptions. Comparing different strategies, we find that the pipeline approach works better when enough text is available. With low-resource languages in mind, we also show that translations can be effectively used in place of transcriptions but more data is needed to obtain similar results.
We present a visually grounded model of speech perception which projects spoken utterances and images to a joint semantic space. We use a multi-layer recurrent highway network to model the temporal nature of spoken speech, and show that it learns to extract both form and meaning-based linguistic knowledge from the input signal. We carry out an in-depth analysis of the representations used by different components of the trained model and show that encoding of semantic aspects tends to become richer as we go up the hierarchy of layers, whereas encoding of form-related aspects of the language input tends to initially increase and then plateau or decrease.
We present the Zero Resource Speech Challenge 2019, which proposes to build a speech synthesizer without any text or phonetic labels: hence, TTS without T (text-to-speech without text). We provide raw audio for a target voice in an unknown language ( the Voice dataset), but no alignment, text or labels. Participants must discover subword units in an unsupervised way (using the Unit Discovery dataset) and align them to the voice recordings in a way that works best for the purpose of synthesizing novel utterances from novel speakers, similar to the target speakers voice. We describe the metrics used for evaluation, a baseline system consisting of unsupervised subword unit discovery plus a standard TTS system, and a topline TTS using gold phoneme transcriptions. We present an overview of the 19 submitted systems from 10 teams and discuss the main results.
Children acquire language subconsciously by observing the surrounding world and listening to descriptions. They can discover the meaning of words even without explicit language knowledge, and generalize to novel compositions effortlessly. In this pap er, we bring this ability to AI, by studying the task of Visually grounded Language Acquisition (VLA). We propose a multimodal transformer model augmented with a novel mechanism for analogical reasoning, which approximates novel compositions by learning semantic mapping and reasoning operations from previously seen compositions. Our proposed method, Analogical Reasoning Transformer Networks (ARTNet), is trained on raw multimedia data (video frames and transcripts), and after observing a set of compositions such as washing apple or cutting carrot, it can generalize and recognize new compositions in new video frames, such as washing carrot or cutting apple. To this end, ARTNet refers to relevant instances in the training data and uses their visual features and captions to establish analogies with the query image. Then it chooses the suitable verb and noun to create a new composition that describes the new image best. Extensive experiments on an instructional video dataset demonstrate that the proposed method achieves significantly better generalization capability and recognition accuracy compared to state-of-the-art transformer models.
This paper introduces the sixth Oriental Language Recognition (OLR) 2021 Challenge, which intends to improve the performance of language recognition systems and speech recognition systems within multilingual scenarios. The data profile, four tasks, t wo baselines, and the evaluation principles are introduced in this paper. In addition to the Language Identification (LID) tasks, multilingual Automatic Speech Recognition (ASR) tasks are introduced to OLR 2021 Challenge for the first time. The challenge this year focuses on more practical and challenging problems, with four tasks: (1) constrained LID, (2) unconstrained LID, (3) constrained multilingual ASR, (4) unconstrained multilingual ASR. Baselines for LID tasks and multilingual ASR tasks are provided, respectively. The LID baseline system is an extended TDNN x-vector model constructed with Pytorch. A transformer-based end-to-end model is provided as the multilingual ASR baseline system. These recipes will be online published, and available for participants to construct their own LID or ASR systems. The baseline results demonstrate that those tasks are rather challenging and deserve more effort to achieve better performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا