ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Algebraic Recombination for Compositional Generalization

100   0   0.0 ( 0 )
 نشر من قبل Shengnan An
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural sequence models exhibit limited compositional generalization ability in semantic parsing tasks. Compositional generalization requires algebraic recombination, i.e., dynamically recombining structured expressions in a recursive manner. However, most previous studies mainly concentrate on recombining lexical units, which is an important but not sufficient part of algebraic recombination. In this paper, we propose LeAR, an end-to-end neural model to learn algebraic recombination for compositional generalization. The key insight is to model the semantic parsing task as a homomorphism between a latent syntactic algebra and a semantic algebra, thus encouraging algebraic recombination. Specifically, we learn two modules jointly: a Composer for producing latent syntax, and an Interpreter for assigning semantic operations. Experiments on two realistic and comprehensive compositional generalization benchmarks demonstrate the effectiveness of our model. The source code is publicly available at https://github.com/microsoft/ContextualSP.



قيم البحث

اقرأ أيضاً

251 - Brenden M. Lake 2019
People can learn a new concept and use it compositionally, understanding how to blicket twice after learning how to blicket. In contrast, powerful sequence-to-sequence (seq2seq) neural networks fail such tests of compositionality, especially when com posing new concepts together with existing concepts. In this paper, I show how memory-augmented neural networks can be trained to generalize compositionally through meta seq2seq learning. In this approach, models train on a series of seq2seq problems to acquire the compositional skills needed to solve new seq2seq problems. Meta se2seq learning solves several of the SCAN tests for compositional learning and can learn to apply implicit rules to variables.
Modern neural machine translation (NMT) models have achieved competitive performance in standard benchmarks such as WMT. However, there still exist significant issues such as robustness, domain generalization, etc. In this paper, we study NMT models from the perspective of compositional generalization by building a benchmark dataset, CoGnition, consisting of 216k clean and consistent sentence pairs. We quantitatively analyze effects of various factors using compound translation error rate, then demonstrate that the NMT model fails badly on compositional generalization, although it performs remarkably well under traditional metrics.
Despite the success of sequence-to-sequence (seq2seq) models in semantic parsing, recent work has shown that they fail in compositional generalization, i.e., the ability to generalize to new structures built of components observed during training. In this work, we posit that a span-based parser should lead to better compositional generalization. we propose SpanBasedSP, a parser that predicts a span tree over an input utterance, explicitly encoding how partial programs compose over spans in the input. SpanBasedSP extends Pasupat et al. (2019) to be comparable to seq2seq models by (i) training from programs, without access to gold trees, treating trees as latent variables, (ii) parsing a class of non-projective trees through an extension to standard CKY. On GeoQuery, SCAN and CLOSURE datasets, SpanBasedSP performs similarly to strong seq2seq baselines on random splits, but dramatically improves performance compared to baselines on splits that require compositional generalization: from $61.0 rightarrow 88.9$ average accuracy.
131 - Hao Zheng , Mirella Lapata 2020
Although neural sequence-to-sequence models have been successfully applied to semantic parsing, they fail at compositional generalization, i.e., they are unable to systematically generalize to unseen compositions of seen components. Motivated by trad itional semantic parsing where compositionality is explicitly accounted for by symbolic grammars, we propose a new decoding framework that preserves the expressivity and generality of sequence-to-sequence models while featuring lexicon-style alignments and disentangled information processing. Specifically, we decompose decoding into two phases where an input utterance is first tagged with semantic symbols representing the meaning of individual words, and then a sequence-to-sequence model is used to predict the final meaning representation conditioning on the utterance and the predicted tag sequence. Experimental results on three semantic parsing datasets show that the proposed approach consistently improves compositional generalization across model architectures, domains, and semantic formalisms.
Generalization of models to out-of-distribution (OOD) data has captured tremendous attention recently. Specifically, compositional generalization, i.e., whether a model generalizes to new structures built of components observed during training, has s parked substantial interest. In this work, we investigate compositional generalization in semantic parsing, a natural test-bed for compositional generalization, as output programs are constructed from sub-components. We analyze a wide variety of models and propose multiple extensions to the attention module of the semantic parser, aiming to improve compositional generalization. We find that the following factors improve compositional generalization: (a) using contextual representations, such as ELMo and BERT, (b) informing the decoder what input tokens have previously been attended to, (c) training the decoder attention to agree with pre-computed token alignments, and (d) downsampling examples corresponding to frequent program templates. While we substantially reduce the gap between in-distribution and OOD generalization, performance on OOD compositions is still substantially lower.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا