ﻻ يوجد ملخص باللغة العربية
The correlations between the sequence of monomers in a polymer and its three-dimensional structure is a grand challenge in polymer science and biology. The properties and functions of macromolecules depend on their 3D shape that has appeared to be dictated by their monomer sequence. However, the progress towards understanding the sequence-structure-property correlations and their utilization in materials engineering are slow because it is almost impossible to characterize astronomically large number of possible sequences of a copolymer using traditional experimental and simulation methods. To address this problem, here, we combine evolutionary computing and coarse-grained molecular dynamics simulation and study the sequence-structure correlations of a model AB type copolymer system. The CGMD based evolutionary algorithm screens the sequence space of the copolymer efficiently and identifies wide range of single molecule structures including extremal radius of gyrations. The data provide new insights on the sequence-Rg correlations of the copolymer system and their impact on the structure and functionality of polymeric materials. The work highlights the opportunities of sequence specific control of macromolecular structure for designing materials with exceptional properties.
We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to
New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals and Weyl semimetals. In the last few years, large efforts have been performed to classify all known
Using a reference system approach, we develop an analytical theory for the adsorption of random heteropolymers with exponentially decaying and/or oscillating sequence correlations on planar homogeneous surfaces. We obtain a simple equation for the ad
It is well known that the crystalline structure of the III-V nanowires (NWs) is mainly controlled by the wetting contact angle of the catalyst droplet which can be tuned by the III and V flux. In this work we present a method to control the wurtzite
Scattering maps from strained or disordered nano-structures around a Bragg reflection can either be computed quickly using approximations and a (Fast) Fourier transform, or using individual atomic positions. In this article we show that it is possibl