ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining positron emission from pulsar populations with AMS-02 data

84   0   0.0 ( 0 )
 نشر من قبل Luca Orusa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsar wind nebulae (PWNe) can significantly contribute to the excess of the positron ($e^+$) cosmic-ray flux has been consolidated after the observation of a $gamma$-ray emission at TeV energies of a few degree size around Geminga and Monogem PWNe. In this work we undertake massive simulations of galactic pulsars populations, adopting different distributions for their position in the Galaxy, intrinsic physical properties, pair emission models, in order to overcome the incompleteness of the ATNF catalogue. We fit the $e^+$ AMS-02 data together with a secondary component due to collisions of primary cosmic rays with the interstellar medium. We find that several mock galaxies have a pulsar population able to explain the observed $e^+$ flux, typically by few, bright sources. We determine the physical parameters of the pulsars dominating the $e^+$ flux, and assess the impact of different assumptions on radial distributions, spin-down properties, Galactic propagation scenarios and $e^+$ emission time.



قيم البحث

اقرأ أيضاً

The AMS-02 collaboration has just released its first result of the cosmic positron fraction $e^+/(e^-+e^+)$ with high precision up to $sim 350$ GeV. The AMS-02 result shows the same trend with the previous PAMELA result, which requires extra electron /positron sources on top of the conventional cosmic ray background, either from astrophysical sources or from dark matter annihilation/decay. In this paper we try to figure out the nature of the extra sources by fitting to the AMS-02 $e^+/(e^-+e^+)$ data, as well as the electron and proton spectra by PAMELA and the $(e^-+e^+)$ spectrum by Fermi and HESS. We adopt the GALPROP package to calculate the propagation of the Galactic cosmic rays and the Markov Chain Monte Carlo sampler to do the fit. We find that the AMS-02 data have implied essential difference from the PAMELA data. There is {rm tension} between the AMS-02 $e^+/(e^-+e^+)$ data and the Fermi/HESS $(e^-+e^+)$ spectrum, that the AMS-02 data requires less contribution from the extra sources than Fermi/HESS. Then we redo the fit without including the Fermi/HESS data. In this case both the pulsars and dark matter annihilation/decay can explain the AMS-02 data. The pulsar scenario has a soft inject spectrum with the power-law index $sim 2$, while the dark matter scenario needs $tau^+tau^-$ final state with mass $sim 600$ GeV and a boost factor $sim 200$.
This article aims at establishing new benchmark scenarios for Galactic cosmic-ray propagation in the GV-TV rigidity range, based on fits to the AMS-02 B/C data with the USINE v3.5 propagation code. We employ a new fitting procedure, cautiously taking into account data systematic error correlations in different rigidity bins and considering Solar modulation potential and leading nuclear cross-section as nuisance parameters. We delineate specific low, intermediate, and high-rigidity ranges that can be related to both features in the data and peculiar microphysics mechanisms resulting in spectral breaks. We single out a scenario which yields excellent fits to the data and includes all the presumably relevant complexity, the BIG model. This model has two limiting regimes: (i) the SLIM model, a minimal diffusion-only setup, and (ii) the QUAINT model, a convection-reacceleration model where transport is tuned by non-relativistic effects. All models lead to robust predictions in the high-energy regime ($gtrsim10$GV), i.e. independent of the propagation scenario: at $1sigma$, the diffusion slope $delta$ is $[0.43-0.53]$, whereas $K_{10}$, the diffusion coefficient at 10GV, is $[0.26-0.36]$kpc$^2$Myr$^{-1}$; we confirm the robustness of the high-energy break, with a typical value $Delta_hsim 0.2$. We also find a hint for a similar (reversed) feature at low rigidity around the B/C peak ($sim 4$GV) which might be related to some effective damping scale in the magnetic turbulence.
The AMS-02 experiment has ushered cosmic-ray physics into precision era. In a companion paper, we designed an improved method to calibrate propagation models on B/C data. Here we provide a robust prediction of the $bar{p}$ flux, accounting for severa l sources of uncertainties and their correlations. Combined with a correlation matrix for the $bar{p}$ data, we show that the latter are consistent with a secondary origin. This paper presents key elements relevant to the dark matter search in this channel, notably by pointing out the inherent difficulties in achieving predictions at the percent-level precision.
86 - Qiang Yuan 2018
We study the propagation and injection models of cosmic rays using the latest measurements of the Boron-to-Carbon ratio and fluxes of protons, Helium, Carbon, and Oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Explorer at top of the Earth, and the Voyager spacecraft outside the heliosphere. The ACE data during the same time interval of the AMS-02 data are extracted to minimize the complexity of the solar modulation effect. We find that the cosmic ray nucleus data favor a modified version of the diffusion-reacceleration scenario of the propagation. The diffusion coefficient is, however, required to increase moderately with decreasing rigidity at low energies, which has interesting implications on the particle and plasma interaction in the Milky Way. We further find that the low rigidity ($<$ a few GV) injection spectra are different for different compositions. The injection spectra are softer for lighter nuclei. These results are expected to be helpful in understanding the acceleration process of cosmic rays.
The magnetised solar wind modulates the Galactic cosmic ray flux in the heliosphere up to rigidities as high as 40 GeV. In this work, we present a new and straightforward extension of the popular, but limited force-field model, thus providing a fast and robust method for phenomenological studies of Galactic cosmic rays. Our semi-analytical approach takes into account charge-sign dependent modulation due to drifts in the heliospheric magnetic field and has been validated via comparison to a fully numerical code. Our model nicely reproduces the time-dependent AMS-02 measurements and we find the strength of diffusion and drifts to be strongly correlated with the heliospheric tilt angle and magnitude of the magnetic field. We are able to predict the electron and positron fluxes beyond the range for which measurements by AMS-02 have been presented. We have made an example script for the semi-analytical model publicly available and we urge the community to adopt this approach for phenomenological studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا