ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-dependent AMS-02 electron-positron fluxes in an extended force-field model

105   0   0.0 ( 0 )
 نشر من قبل Marco Kuhlen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetised solar wind modulates the Galactic cosmic ray flux in the heliosphere up to rigidities as high as 40 GeV. In this work, we present a new and straightforward extension of the popular, but limited force-field model, thus providing a fast and robust method for phenomenological studies of Galactic cosmic rays. Our semi-analytical approach takes into account charge-sign dependent modulation due to drifts in the heliospheric magnetic field and has been validated via comparison to a fully numerical code. Our model nicely reproduces the time-dependent AMS-02 measurements and we find the strength of diffusion and drifts to be strongly correlated with the heliospheric tilt angle and magnitude of the magnetic field. We are able to predict the electron and positron fluxes beyond the range for which measurements by AMS-02 have been presented. We have made an example script for the semi-analytical model publicly available and we urge the community to adopt this approach for phenomenological studies.



قيم البحث

اقرأ أيضاً

The AMS-02 collaboration has just released its first result of the cosmic positron fraction $e^+/(e^-+e^+)$ with high precision up to $sim 350$ GeV. The AMS-02 result shows the same trend with the previous PAMELA result, which requires extra electron /positron sources on top of the conventional cosmic ray background, either from astrophysical sources or from dark matter annihilation/decay. In this paper we try to figure out the nature of the extra sources by fitting to the AMS-02 $e^+/(e^-+e^+)$ data, as well as the electron and proton spectra by PAMELA and the $(e^-+e^+)$ spectrum by Fermi and HESS. We adopt the GALPROP package to calculate the propagation of the Galactic cosmic rays and the Markov Chain Monte Carlo sampler to do the fit. We find that the AMS-02 data have implied essential difference from the PAMELA data. There is {rm tension} between the AMS-02 $e^+/(e^-+e^+)$ data and the Fermi/HESS $(e^-+e^+)$ spectrum, that the AMS-02 data requires less contribution from the extra sources than Fermi/HESS. Then we redo the fit without including the Fermi/HESS data. In this case both the pulsars and dark matter annihilation/decay can explain the AMS-02 data. The pulsar scenario has a soft inject spectrum with the power-law index $sim 2$, while the dark matter scenario needs $tau^+tau^-$ final state with mass $sim 600$ GeV and a boost factor $sim 200$.
The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsar wind nebulae (PWNe) can significantly contribute to the excess of the positron ($e^+$) cosmic-ray flux has be en consolidated after the observation of a $gamma$-ray emission at TeV energies of a few degree size around Geminga and Monogem PWNe. In this work we undertake massive simulations of galactic pulsars populations, adopting different distributions for their position in the Galaxy, intrinsic physical properties, pair emission models, in order to overcome the incompleteness of the ATNF catalogue. We fit the $e^+$ AMS-02 data together with a secondary component due to collisions of primary cosmic rays with the interstellar medium. We find that several mock galaxies have a pulsar population able to explain the observed $e^+$ flux, typically by few, bright sources. We determine the physical parameters of the pulsars dominating the $e^+$ flux, and assess the impact of different assumptions on radial distributions, spin-down properties, Galactic propagation scenarios and $e^+$ emission time.
Based on the precise nuclei data released by AMS-02, we study the spectra hardening of both the primary (proton, helium, carbon, oxygen, and the primary component of nitrogen) and the secondary (anti-proton, lithium, beryllium, boron and the secondar y component of nitrogen) cosmic ray (CR) nuclei. With the diffusion-reacceleration model, we consider two schemes to reproduce the hardening in the spectra: (i) A high-rigidity break in primary source injection; (ii) A high-rigidity break in diffusion coefficient. The global fitting results show that both schemes could reproduce the spectra hardening in current status. More precise multi-TV data (especially the data of secondary CR species) is needed if one wants to distinguish these two schemes. In our global fitting, each of the nuclei species is allocated an independent solar modulation potential and a re-scale factor (which accounts for the isotopic abundance for primary nuclei species and uncertainties of production cross section or inhomogeneity of CR sources and propagation for secondary nuclei species). The fitting values of these two parameter classes show us some hints on some new directions in CR physics. All the fitted re-scale factors of primary nuclei species have values that systematically smaller than 1.0, while that of secondary nuclei species are systematically larger than 1.0. Moreover, both the re-scale factor and solar modulation potential of beryllium have values which are obviously different from other species. This might indicate that beryllium has the specificity not only on its propagation in the heliosphere, but also on its production cross section. All these new results should be seriously studied in the future.
The latest AMS-02 data on cosmic ray electrons show a break in the energy spectrum around 40 GeV, with a change in the slope of about 0.1. We perform a combined fit to the newest AMS-02 positron and electron flux data using a model which includes pro duction of pairs from pulsar wind nebulae (PWNe), electrons from supernova remnants (SNRs) and both species from spallation of hadronic cosmic rays with interstellar medium atoms. We demonstrate that the change of slope in the AMS-02 electron data is well explained by the interplay between the flux contributions from SNRs and from PWNe. In fact, the relative contribution to the data of these two populations changes by a factor of about 13 from 10 to 1000 GeV. The effect of the energy losses alone, when the inverse Compton scattering is properly computed within a fully numerical treatment of the Klein-Nishina cross section, cannot explain the break in the $e^-$ flux data, as recently proposed in the literature.
The AMS-02 experiment has ushered cosmic-ray physics into precision era. In a companion paper, we designed an improved method to calibrate propagation models on B/C data. Here we provide a robust prediction of the $bar{p}$ flux, accounting for severa l sources of uncertainties and their correlations. Combined with a correlation matrix for the $bar{p}$ data, we show that the latter are consistent with a secondary origin. This paper presents key elements relevant to the dark matter search in this channel, notably by pointing out the inherent difficulties in achieving predictions at the percent-level precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا