ﻻ يوجد ملخص باللغة العربية
We count the number of independent solutions to crossing constraints of four point functions involving charged scalars and charged fermions in a CFT with large gap in the spectrum. To find the CFT data we employ recently developed analytical functionals to charged fields. We compute the corresponding higher dimensional flat space S matrices in an independent group theoretic manner and obtain agreement with our CFT counting of ambiguities. We also write down the local lagrangians explicitly. Our work lends further evidence to cite{Heemskerk:2009pn} that any CFT with a large charge expansion and a gap in the spectrum has an AdS bulk dual.
In AdS/CFT, the non-uniqueness of the reconstructed bulk from boundary subregions has motivated the notion of code subspaces. We present some closely related structures that arise in flat space. A useful organizing idea is that of an $asymptotic$ cau
In the context of holography, entanglement entropy can be studied either by i) extremal surfaces or ii) bit threads, i.e., divergenceless vector fields with a norm bound set by the Planck length. In this paper we develop a new method for metric recon
We consider a system of two massive, mutually interacting probe real scalar fields, in zero temperature holographic backgrounds. The system does not have any continuous symmetry. For a suitable range of the interaction parameters adhering to the inte
It is a long-standing conjecture that any CFT with a large central charge and a large gap $Delta_{text{gap}}$ in the spectrum of higher-spin single-trace operators must be dual to a local effective field theory in AdS. We prove a sharp form of this c
In this paper we construct non-Abelian gauge theories with fermions and scalars that nevertheless possess asymptotic freedom.The scalars are taken to be in a chiral multiplet transforming as $(2,2)$ under $SU(2)_Lotimes SU(2)_R$ and transforming as s