ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk Locality and Asymptotic Causal Diamonds

325   0   0.0 ( 0 )
 نشر من قبل Chethan Krishnan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chethan Krishnan




اسأل ChatGPT حول البحث

In AdS/CFT, the non-uniqueness of the reconstructed bulk from boundary subregions has motivated the notion of code subspaces. We present some closely related structures that arise in flat space. A useful organizing idea is that of an $asymptotic$ causal diamond (ACD): a causal diamond attached to the conformal boundary of Minkowski space. The space of ACDs is defined by pairs of points, one each on the future and past null boundaries, ${cal I}^{pm}$. We observe that for flat space with an IR cut-off, this space (a) encodes a preferred class of boundary subregions, (b) is a plausible way to capture holographic data for local bulk reconstruction, (c) has a natural interpretation as the kinematic space for holography, (d) leads to a holographic entanglement entropy in flat space that matches previous definitions and satisfies strong sub-additivity, and, (e) has a bulk union/intersection structure isomorphic to the one that motivated the introduction of quantum error correction in AdS/CFT. By sliding the cut-off, we also note one substantive way in which flat space holography differs from that in AdS. Even though our discussion is centered around flat space (and AdS), we note that there are notions of ACDs in other spacetimes as well. They could provide a covariant way to abstractly characterize tensor sub-factors of Hilbert spaces of holographic theories.



قيم البحث

اقرأ أيضاً

In the context of holography, entanglement entropy can be studied either by i) extremal surfaces or ii) bit threads, i.e., divergenceless vector fields with a norm bound set by the Planck length. In this paper we develop a new method for metric recon struction based on the latter approach and show the advantages over existing ones. We start by studying general linear perturbations around the vacuum state. Generic thread configurations turn out to encode the information about the metric in a highly nonlocal way, however, we show that for boundary regions with a local modular Hamiltonian there is always a canonical choice for the perturbed thread configurations that exploits bulk locality. To do so, we express the bit thread formalism in terms of differential forms so that it becomes manifestly background independent. We show that the Iyer-Wald formalism provides a natural candidate for a canonical local perturbation, which can be used to recast the problem of metric reconstruction in terms of the inversion of a particular linear differential operator. We examine in detail the inversion problem for the case of spherical regions and give explicit expressions for the inverse operator in this case. Going beyond linear order, we argue that the operator that must be inverted naturally increases in order. However, the inversion can be done recursively at different orders in the perturbation. Finally, we comment on an alternative way of reconstructing the metric non-perturbatively by phrasing the inversion problem as a particular optimization problem.
121 - Michele Arzano 2020
It is shown that a general radial conformal Killing vector in Minkowski space-time can be associated to a generator of time evolution in conformal quantum mechanics. Among these conformal Killing vectors one finds a class which maps causal diamonds i n Minkowski space-time into themselves. The flow of such Killing vectors describes worldlines of accelerated observers with a finite lifetime within the causal diamond. Time evolution of static diamond observers is equivalent to time evolution in conformal quantum mechanics governed by a hyperbolic Hamiltonian and covering only a segment of the time axis. This indicates that the Unruh temperature perceived by static diamond observers in the vacuum state of inertial observers in Minkowski space can be obtained from the behaviour of the two-point functions of conformal quantum mechanics.
To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of ${mathscr{I}}^+$. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMS charges at ${mathscr{I}}^+$.
Using the tensor Radon transform and related numerical methods, we study how bulk geometries can be explicitly reconstructed from boundary entanglement entropies in the specific case of $mathrm{AdS}_3/mathrm{CFT}_2$. We find that, given the boundary entanglement entropies of a $2$d CFT, this framework provides a quantitative measure that detects whether the bulk dual is geometric in the perturbative (near AdS) limit. In the case where a well-defined bulk geometry exists, we explicitly reconstruct the unique bulk metric tensor once a gauge choice is made. We then examine the emergent bulk geometries for static and dynamical scenarios in holography and in many-body systems. Apart from the physics results, our work demonstrates that numerical methods are feasible and effective in the study of bulk reconstruction in AdS/CFT.
165 - A. A. Saharian 2020
We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary. For both these cases the contribution in the vacuum expectation value (VEV) of the energy-momentum tensor is separated explicitly and its behavior in various asymptotic regions of the parameters is studied. It is shown that the influence of the gravitational field on the local properties of the quantum vacuum is essential at distance from the brane larger than the AdS curvature radius. In the geometry with a brane parallel to the AdS boundary the VEV of the energy-momentum tensor is considered for scalar field with the Robin boundary condition, for Dirac field with the bag boundary condition and for the electromagnetic field. In the latter case two types of boundary conditions are discussed. The first one is a generalization of the perfect conductor boundary condition and the second one corresponds to the confining boundary condition used in QCD for gluons. For the geometry of a brane intersecting the AdS boundary, the case of a scalar field is considered. The corresponding energy-momentum tensor, apart from the diagonal components, has nonzero off-diagonal component. As a consequence of the latter, in addition to the normal component, the Casimir force acquires a component parallel to the brane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا