ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the joint spectral mode of photon pairs using intensity interferometry

73   0   0.0 ( 0 )
 نشر من قبل Guillaume Thekkadath
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time-frequency structure of quantum light can be manipulated for information processing and metrology. Characterizing this structure is also important for developing quantum light sources with high modal purity that can interfere with other independent sources. Here, we present and experimentally demonstrate a scheme based on intensity interferometry to measure the joint spectral mode of photon pairs produced by spontaneous parametric down-conversion. We observe correlations in the spectral phase of the photons due to chirp in the pump. We also show that our scheme can be combined with stimulated emission tomography to quickly measure their mode using bright classical light. Our scheme does not require phase stability, nonlinearities, or spectral shaping, and thus is an experimentally simple way of measuring the modal structure of quantum light.



قيم البحث

اقرأ أيضاً

The practical prospect of quantum communication and information processing relies on sophisticated single photon pairs which feature controllable waveform, narrow spectrum, excellent purity, fiber compatibility and miniaturized design. For practical realizations, stable, miniaturized, low-cost devices are required. Sources with one or some of above performances have been demonstrated already, but it is quite challenging to have a source with all of the described characteristics simultaneously. Here we report on an integrated single-longitudinal-mode non-degenerate narrowband photon pair source, which exhibits all requirements needed for quantum applications. The device is composed of a periodically poled Ti-indiffused lithium niobate waveguide with high reflective dielectric mirror coatings deposited on the waveguide end-faces. Photon pairs with wavelengths around 890 nm and 1320 nm are generated via type II phase-matched parametric down-conversion. Clustering in this dispersive cavity restricts the whole conversion spectrum to one single-longitudinal-mode in a single cluster yielding a narrow bandwidth of only 60 MHz. The high conversion efficiency in the waveguide, together with the spectral clustering in the doubly resonant waveguide, leads to a high brightness of $3times10^4~$pairs/(s$cdot$mW$cdot$MHz). This source exhibits prominent single-longitudinal-mode purity and remarkable temporal shaping capability. Especially, due to temporal broadening, we can observe that the coherence time of the two-photon component of PDC state is actually longer than the one of the single photon states. The miniaturized monolithic design makes this source have various fiber communication applications.
The authors demonstrate a form of two-photon-counting interferometry by measuring the coincidence counts between single-photon-counting detectors at an output port of a Mach-Zehnder Interferometer (MZI) following injection of broad-band time-frequenc y-entangled photon pairs (EPP) generated from collinear spontaneous parametric down conversion into a single input port. Spectroscopy and refractometry are performed on a sample inserted in one internal path of the MZI by scanning the other path in length, which acquires phase and amplitude information about the samples linear response. Phase modulation and lock-in detection are introduced to increase detection signal-to-noise ratio and implement a down-sampling technique for scanning the interferometer delay, which reduces the sampling requirements needed to reproduce fully the temporal interference pattern. The phase-modulation technique also allows the contributions of various quantum-state pathways leading to the final detection outcomes to be extracted individually. Feynman diagrams frequently used in the context of molecular spectroscopy are used to describe the interferences resulting from the coherence properties of time-frequency EPPs passing through the MZI. These results are an important step toward implementation of a proposed method for molecular spectroscopy, i.e. quantum-light-enhanced two-dimensional spectroscopy.
Stellar Intensity Interferometry is a technique based on the measurement of the second order spatial correlation of the light emitted from a star. The physical information provided by these measurements is the angular size and structure of the emitti ng source. A worldwide effort is presently under way to implement stellar intensity interferometry on telescopes separated by long baselines and on future arrays of Cherenkov telescopes. We describe an experiment of this type, realized at the Asiago Observatory (Italy), in which we performed for the first time measurements of the correlation counting photon coincidences in post-processing by means of a single photon software correlator and exploiting entirely the quantum properties of the light emitted from a star. We successfully detected the temporal correlation of Vega at zero baseline and performed a measurement of the correlation on a projected baseline of $sim$2 km. The average discrete degree of coherence at zero baseline for Vega is $< g^{(2)} > , = 1.0034 pm 0.0008$, providing a detection with a signal-to-noise ratio $S/N gtrsim 4$. No correlation is detected over the km baseline. The measurements are consistent with the expected degree of spatial coherence for a source with the 3.3 mas angular diameter of Vega. The experience gained with the Asiago experiment will serve for future implementations of stellar intensity interferometry on long-baseline arrays of Cherenkov telescopes.
124 - W. Guerin , A. Dussaux , M. Fouche 2017
We report the first intensity correlation measured with star light since Hanbury Brown and Twiss historical experiments. The photon bunching $g^{(2)}(tau, r=0)$, obtained in the photon counting regime, was measured for 3 bright stars, $alpha$ Boo, $a lpha$ CMi, and $beta$ Gem. The light was collected at the focal plane of a 1~m optical telescope, was transported by a multi-mode optical fiber, split into two avalanche photodiodes and digitally correlated in real-time. For total exposure times of a few hours, we obtained contrast values around $2times10^{-3}$, in agreement with the expectation for chaotic sources, given the optical and electronic bandwidths of our setup. Comparing our results with the measurement of Hanbury Brown et al. on $alpha$ CMi, we argue for the timely opportunity to extend our experiments to measuring the spatial correlation function over existing and/or foreseen arrays of optical telescopes diluted over several kilometers. This would enable $mu$as long-baseline interferometry in the optical, especially in the visible wavelengths with a limiting magnitude of 10.
Interferometers are widely used in imaging technologies to achieve enhanced spatial resolution, but require that the incoming photons be indistinguishable. In previous work, we built and analyzed color erasure detectors which expand the scope of inte nsity interferometry to accommodate sources of different colors. Here we experimentally demonstrate how color erasure detectors can achieve improved spatial resolution in an imaging task, well beyond the diffraction limit. Utilizing two 10.9 mm-aperture telescopes and a 0.8 m baseline, we measure the distance between a 1063.6 nm source and a 1064.4 nm source separated by 4.2 mm at a distance of 1.43 km, which surpasses the diffraction limit of a single telescope by about 40 times. Moreover, chromatic intensity interferometry allows us to recover the phase of the Fourier transform of the imaged objects - a quantity that is, in the presence of modest noise, inaccessible to conventional intensity interferometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا