ﻻ يوجد ملخص باللغة العربية
Jonathan M. Borwein (1951-2016) was a prolific mathematician whose career spanned several countries (UK, Canada, USA, Australia) and whose many interests included analysis, optimisation, number theory, special functions, experimental mathematics, mathematical finance, mathematical education, and visualisation. We describe his life and legacy, and give an annotated bibliography of some of his most significant books and papers.
We present an infinite family of Borwein type $+ - - $ conjectures. The expressions in the conjecture are related to multiple basic hypergeometric series with Macdonald polynomial argument.
We show that the Mahler measure of every Borwein polynomial -- a polynomial with coefficients in $ {-1,0,1 }$ having non-zero constant term -- can be expressed as a maximal Lyapunov exponent of a matrix cocycle that arises in the spectral theory of b
This is a collection of definitions, notations and proofs for the Bernoulli numbers $B_n$ appearing in formulas for the sum of integer powers, some of which can be found scattered in the large related historical literature in French, English and Germ
This paper is an exposition and review of the research related to the Riemann Hypothesis starting from the work of Riemann and ending with a description of the work of G. Spencer-Brown.
Throughout more than two millennia many formulas have been obtained, some of them beautiful, to calculate the number pi. Among them, we can find series, infinite products, expansions as continued fractions and expansions using radicals. Some expressi