ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Generative Artificial Intelligence system to decipher species coexistence patterns

56   0   0.0 ( 0 )
 نشر من قبل Veronica Sanz
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

1. Deciphering coexistence patterns is a current challenge to understanding diversity maintenance, especially in rich communities where the complexity of these patterns is magnified through indirect interactions that prevent their approximation with classical experimental approaches. 2. We explore cutting-edge Machine Learning techniques called Generative Artificial Intelligence (GenAI) to decipher species coexistence patterns in vegetation patches, training generative adversarial networks (GAN) and variational AutoEncoders (VAE) that are then used to unravel some of the mechanisms behind community assemblage. 3. The GAN accurately reproduces the species composition of real patches as well as the affinity of plant species to different soil types, and the VAE also reaches a high level of accuracy, above 99%. Using the artificially generated patches, we found that high order interactions tend to suppress the positive effects of low order interactions. Finally, by reconstructing successional trajectories we could identify the pioneer species with larger potential to generate a high diversity of distinct patches in terms of species composition. 4. Understanding the complexity of species coexistence patterns in diverse ecological communities requires new approaches beyond heuristic rules. Generative Artificial Intelligence can be a powerful tool to this end as it allows to overcome the inherent dimensionality of this challenge.



قيم البحث

اقرأ أيضاً

Anemia, for which erythropoiesis-stimulating agents (ESAs) and iron supplements (ISs) are used as preventive measures, presents important difficulties for hemodialysis patients. Nevertheless, the number of physicians able to manage such medications a ppropriately is not keeping pace with the rapid increase of hemodialysis patients. Moreover, the high cost of ESAs imposes heavy burdens on medical insurance systems. An artificial-intelligence-supported anemia control system (AISACS) trained using administration direction data from experienced physicians has been developed by the authors. For the system, appropriate data selection and rectification techniques play important roles. Decision making related to ESAs poses a multi-class classification problem for which a two-step classification technique is introduced. Several validations have demonstrated that AISACS exhibits high performance with correct classification rates of 72-87% and clinically appropriate classification rates of 92-98%.
In the NeurIPS 2018 Artificial Intelligence for Prosthetics challenge, participants were tasked with building a controller for a musculoskeletal model with a goal of matching a given time-varying velocity vector. Top participants were invited to desc ribe their algorithms. In this work, we describe the challenge and present thirteen solutions that used deep reinforcement learning approaches. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each team implemented different modifications of the known algorithms by, for example, dividing the task into subtasks, learning low-level control, or by incorporating expert knowledge and using imitation learning.
Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the diagnosis of DED rely on an experienced observer for image interpretation, which may be considered subjective and result in variation in diagnosis. Since artificial intelligence (AI) systems are capable of advanced problem solving, use of such techniques could lead to more objective diagnosis. Although the term `AI is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes. Powerful machine learning techniques have been harnessed to understand nuances in patient data and medical images, aiming for consistent diagnosis and stratification of disease severity. This is the first literature review on the use of AI in DED. We provide a brief introduction to AI, report its current use in DED research and its potential for application in the clinic. Our review found that AI has been employed in a wide range of DED clinical tests and research applications, primarily for interpretation of interferometry, slit-lamp and meibography images. While initial results are promising, much work is still needed on model development, clinical testing and standardisation.
540 - Amir Husain 2017
This paper covers a number of approaches that leverage Artificial Intelligence algorithms and techniques to aid Unmanned Combat Aerial Vehicle (UCAV) autonomy. An analysis of current approaches to autonomous control is provided followed by an explora tion of how these techniques can be extended and enriched with AI techniques including Artificial Neural Networks (ANN), Ensembling and Reinforcement Learning (RL) to evolve control strategies for UCAVs.
65 - Steve DiPaola , Liane Gabora , 2018
The common view that our creativity is what makes us uniquely human suggests that incorporating research on human creativity into generative deep learning techniques might be a fruitful avenue for making their outputs more compelling and human-like. Using an original synthesis of Deep Dream-based convolutional neural networks and cognitive based computational art rendering systems, we show how honing theory, intrinsic motivation, and the notion of a seed incident can be implemented computationally, and demonstrate their impact on the resulting generative art. Conversely, we discuss how explorations in deep learn-ing convolutional neural net generative systems can inform our understanding of human creativity. We conclude with ideas for further cross-fertilization between AI based computational creativity and psychology of creativity.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا