ﻻ يوجد ملخص باللغة العربية
Symbiotic stars belong to a group of interacting binaries that display a wide variety of phenomena, including prominent outbursts connected with mass transfer, as well as stellar winds, jets, eclipses, or intrinsic variability of the components. Dozens of new symbiotic stars and candidates have been discovered in recent years. However, there are many objects which are still poorly studied. Some symbiotic candidates suspected in the literature have never been studied spectroscopically. In this contribution, we present the first results of the ongoing campaign focused on symbiotic candidates. In the first paper in the series, we study the nature of ten candidate classical symbiotic stars suspected based on their photometric behaviour, colours or abundance pattern. To confirm or reject the symbiotic nature of the studied candidates, we obtained new spectra and analysed them in detail together with available multi-frequency photometric and spectroscopic observations of the objects. Hen 3-860 and V2204 Oph are genuine symbiotic systems showing typical spectral features of burning symbiotic stars and outbursts in the last 100 years. The first object belongs to the uncommon group of eclipsing symbiotic stars. V1988 Sgr cannot be classified as a genuine burning symbiotic star, but the scenario of an accreting-only symbiotic system cannot be ruled out. Hen 4-204 might be a bona-fide symbiotic star due to its similarity with the known symbiotic binary BD Cam. Six other symbiotic candidates (V562 Lyr, IRAS 19050+0001, EC 19249-7343, V1017 Cyg, PN K1-6, V379 Peg) are either single dwarf or giant stars or non-symbiotic binaries.
We present UBVRI photometry of three symbiotic stars ZZ CMi, TX CVn and AG Peg carried out from 1997 to 2008 in Piwnice Observatory near Torun. To search orbital periods of these stars Fourier analysis was used. For two of them, TX CVn and AG Peg, we
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed Symbiotic Star (typical P(orb)=2-3 years). In the majority of ~400 known syst
Symbiotic stars show emission across the electromagnetic spectrum from a wide array of physical processes. At cm-waves both synchrotron and thermal emission is seen, often highly variable and associated with outbursts in the optical and X-rays. Most
We present new multicolour UBVRcIc photometric observations of symbiotic stars, EG And, Z And, BF Cyg, CH Cyg, CI Cyg, V1016 Cyg, V1329 Cyg, AG Dra, RS Oph, AG Peg, AX Per, and the newly discovered (August 2018) symbiotic star HBHA 1704-05, we carrie
Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symb