ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of topological edge states in thermal diffusion

95   0   0.0 ( 0 )
 نشر من قبل Hao Hu Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The topological band theory predicts that bulk materials with nontrivial topological phases support topological edge states. This phenomenon is universal for various wave systems and has been widely observed for electromagnetic and acoustic waves. Here, we extend the notion of band topology from wave to diffusion dynamics. Unlike the wave systems that are usually Hermitian, the diffusion systems are anti-Hermitian with purely imaginary eigenvalues corresponding to decay rates. Via direct probe of the temperature diffusion, we experimentally retrieve the Hamiltonian of a thermal lattice, and observe the emergence of topological edge decays within the gap of bulk decays. Our results show that such edge states exhibit robust decay rates, which are topologically protected against disorders. This work constitutes a thermal analogue of topological insulators and paves the way to exploring defect-immune heat dissipation.



قيم البحث

اقرأ أيضاً

Recently, higher-order topological phases that do not obey the usual bulk-edge correspondence principle have been introduced in electronic insulators and brought into classical systems, featuring with in-gap corner/hinge states. So far, second-order topological insulators have been realized in mechanical metamaterials, microwave circuit, topolectrical circuit and acoustic metamaterials. Here, using near-field scanning measurements, we show the direct observation of corner states in second-order topological photonic crystal (PC) slabs consisting of periodic dielectric rods on a perfect electric conductor (PEC). Based on the generalized two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model, we show that the emergence of corner states roots in the nonzero edge dipolar polarization instead of the nonzero bulk quadrupole polarization. We demonstrate the topological transition of 2D Zak phases of PC slabs by tuning intra-cell distances between two neighboring rods. We also directly observe in-gap 1D edge states and 0D corner states in the microwave regime. Our work presents that the PC slab is a powerful platform to directly observe topological states, and paves the way to study higher-order photonic topological insulators.
We use split-ring resonators to demonstrate topologically protected edge states in the Su-Schieffer-Heeger model experimentally, but in a slow-light wave with the group velocity down to $sim 0.1$ of light speed in free space. A meta-material formed b y an array of complementary split-ring resonators with controllable hopping strength enables the direct observation in transmission and reflection of non-trivial topology eigenstates, including a negative phase velocity regime. By rotating the texture orientation of the diatomic resonators, we can explore all the band structures and unveil the onset of the trivial and non-trivial protected eigenmodes at GHz frequencies, even in the presence of non-negligible loss. Our system realizes a fully tunable and controllable artificial optical system to study the interplay between topology and slow-light towards applications in quantum technologies.
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at systems boundaries. It has led to a number of counter-intuitive phenomena and challenged our understanding of bulk-boundary c orrespondence in topological systems. This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other, with several representative static and periodically driven 1D models, whose topological properties are protected by different symmetries. The emerging insight is that at critical system parameters, even topologically protected edge states can be perfectly delocalized. In particular, it is discovered that this intriguing delocalization occurs if the real spectrum of the systems edge states falls on the same systems complex spectral loop obtained under the periodic boundary condition. We have also performed sample numerical simulation to show that such delocalized topological edge states can be safely reconstructed from time-evolving states. Possible applications of delocalized topological edge states are also briefly discussed.
Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two paralle l edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include the titled dispersion, the chiral-like robust propagation in samples with certain shapes, and the scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states.
Topological defects (TDs) in crystal lattices are elementary lattice imperfections that cannot be removed by local perturbations, due to their real space topology. We show that adding TDs into a valley photonic crystal generates a lattice disclinatio n that acts like a domain wall and hosts topological edge states. The disclination functions as a freeform waveguide connecting a pair of TDs of opposite topological charge. This interplay between the real-space topology of lattice defects and band topology provides a novel scheme to implement large-scale photonic structures with complex arrangements of robust topological waveguides and resonators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا