ﻻ يوجد ملخص باللغة العربية
We analytically describe the plasmonic edge modes for an interface that involves the twisted bilayer graphene (TBG) or other similar Moire van der Waals heterostructure. For this purpose, we employ a spatially homogeneous, isotropic and frequency-dependent tensor conductivity which in principle accounts for electronic and electrostatic interlayer couplings. We predict that the edge mode dispersion relation explicitly depends on the chiral response even in the nonretarded limit, in contrast to the collective bulk plasmonic excitations in the TBG. We obtain a universal function for the dispersion of the optical edge plasmon in the paramagnetic regime. This implies a correspondence of the chiral-TBG optical plasmon to a magnetoplasmon of a single sheet, and chirality is interpreted as an effective magnetic field. The chirality also opens up the possibility of nearly undamped acoustic modes in the paramagnetic regime. Our results may guide future near-field nanoscopy for van der Waals heterostructures. In our analysis, we retain the long-range electrostatic interaction, and apply the Wiener-Hopf method to a system of integral equations for the scalar potentials of the two layers.
We study coherence and entanglement properties of the state space of a composite bi-fermion (two electrons pierced by $lambda$ magnetic flux lines) at one Landau site of a bilayer quantum Hall system. In particular, interlayer imbalance and entanglem
Gated heterostructures containing bilayer graphene with staggered sublattice potentials are investigated by tight binding model with Rashba spin-orbital coupling and Hubbard interaction. The topological phase diagrams depend on the combinations of su
We study the low energy edge states of bilayer graphene in a strong perpendicular magnetic field. Several possible simple boundaries geometries related to zigzag edges are considered. Tight-binding calculations reveal three types of edge state behavi
Skyrmions in antiferromagnetic (AFM) materials with the Dzyaloshinskii-Moriya (DM) interaction are expected to exist for essentially the same reasons as in DM ferromagnets (FM). It is shown that skyrmions in antiferromagnets with the DM interaction c
We present a scheme to obtain anti-chiral edge states in an exciton-polariton honeycomb lattice with strip geometry, where the modes corresponding to both edges propagate in the same direction. Under resonant pumping the effect of a polariton condens