ترغب بنشر مسار تعليمي؟ اضغط هنا

Anti-chiral edge states in an exciton polariton strip

89   0   0.0 ( 0 )
 نشر من قبل Subhaskar Mandal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a scheme to obtain anti-chiral edge states in an exciton-polariton honeycomb lattice with strip geometry, where the modes corresponding to both edges propagate in the same direction. Under resonant pumping the effect of a polariton condensate with nonzero velocity in one linear polarization is predicted to tilt the dispersion of polaritons in the other, which results in an energy shift between two Dirac cones and the otherwise flat edge states become tilted. Our simulations show that due to the spatial separation from the bulk modes the edge modes are robust against disorder.

قيم البحث

اقرأ أيضاً

We present a scheme of interaction-induced topological bandstructures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without req uiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under non-resonant pumping, we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under resonant coherent pumping, we find that it is also possible to engineer a topological dispersion that is linear in wavevector -- a property associated with polariton superfluidity.
88 - R. Banerjee , S. Mandal , 2020
Recently realized higher order topological insulators have taken a surge of interest among the theoretical and experimental condensed matter community. The two-dimensional second order topological insulators give rise to zero-dimensional localized co rner modes that reside within the band gap of the system along with edge modes that inhabit a band edge next to bulk modes. Thanks to the topological nature, information can be trapped at the corners of these systems, which will be unhampered even in the presence of disorder. Being localized at the corners, the exchange of information among the corner states is an issue. Here we show that the nonlinearity in an exciton polariton system can allow the coupling between the different corners through the edge states based on optical parametric scattering, realizing a system of multiple connectible topological modes.
Different from the chiral edge states, antichiral edge states propagating in the same direction on the opposite edges are theoretically proposed based on the modified Haldane model, which is recently experimentally realized in photonic crystal and el ectric lattice systems. Here, we instead present that the antichiral edge states in the two-dimensional system can also be achieved based on the original Haldane model by combining two subsystems with the opposite chirality. Most importantly, by stacking these two-dimensional systems into three-dimension, it is found that the copropagating antichiral hinge states localized on the two opposite diagonal hinge cases of the system can be implemented. Interestingly, the location of antichiral hinge states can be tuned via hopping parameters along the third dimension. By investigating the local Chern number/layer Chern number and transmission against random disorders, we confirm that the proposed antichiral edge states and hinge states are topologically protected and robust against disorders. Our proposed model systems are expected to be realized in photonic crystal and electric lattice systems.
The quest to realise strongly interacting photons remains an outstanding challenge both for fundamental science and for applications. Here, we explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton-polarit ons in a semiconductor microcavity. Using a theory that takes into account non-perturbative correlations between the excitons as well as strong light-matter coupling, we demonstrate the high tunability of an effective interaction between quasiparticles formed by minority component polaritons interacting with a Bose-Einstein condensate (BEC) of a majority component polaritons. In particular, the interaction, which is mediated by the exchange of sound modes in the BEC can be made strong enough to support a bound state of two quasiparticles. Since these quasiparticles consist partly of photons, this in turn corresponds to a dimer state of photons propagating through the BEC. This gives rise to a new light transmission line where the bound state wave function is directly mapped onto correlations between outgoing photons. Our findings open up new routes for realising highly non-linear optical materials and novel hybrid light-matter quantum systems.
The experimental study of edge states in atomically-thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds and the need to measure local properties. In the c ase of graphene, localised edge modes have been predicted in zig-zag and bearded edges, characterised by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the {pi} and {pi}* bands of graphene. We show the momentum space dispersion of the edge states associated to the zig-zag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarisation effects characteristic of polaritons on the properties of these states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا