ﻻ يوجد ملخص باللغة العربية
In this work, we study a generalization of hidden subspace states to hidden coset states (first introduced by Aaronson and Christiano [STOC 12]). This notion was considered independently by Vidick and Zhang [Eurocrypt 21], in the context of proofs of quantum knowledge from quantum money schemes. We explore unclonable properties of coset states and several applications: - We show that assuming indistinguishability obfuscation (iO), hidden coset states possess a certain direct product hardness property, which immediately implies a tokenized signature scheme in the plain model. Previously, it was known only relative to an oracle, from a work of Ben-David and Sattath [QCrypt 17]. - Combining a tokenized signature scheme with extractable witness encryption, we give a construction of an unclonable decryption scheme in the plain model. The latter primitive was recently proposed by Georgiou and Zhandry [ePrint 20], who gave a construction relative to a classical oracle. - We conjecture that coset states satisfy a certain natural (information-theoretic) monogamy-of-entanglement property. Assuming this conjecture is true, we remove the requirement for extractable witness encryption in our unclonable decryption construction, by relying instead on compute-and-compare obfuscation for the class of unpredictable distributions. - Finally, we give a construction of a copy-protection scheme for pseudorandom functions (PRFs) in the plain model. Our scheme is secure either assuming iO, OWF, and extractable witness encryption, or assuming iO, OWF, compute-and-compare obfuscation for the class of unpredictable distributions, and the conjectured monogamy property mentioned above. This is the first example of a copy-protection scheme with provable security in the plain model for a class of functions that is not evasive.
Differential privacy (DP) has arisen as the state-of-the-art metric for quantifying individual privacy when sensitive data are analyzed, and it is starting to see practical deployment in organizations such as the US Census Bureau, Apple, Google, etc.
The hardness of the learning with errors (LWE) problem is one of the most fruitful resources of modern cryptography. In particular, it is one of the most prominent candidates for secure post-quantum cryptography. Understanding its quantum complexity
Starting from the one-way group action framework of Brassard and Yung (Crypto 90), we revisit building cryptography based on group actions. Several previous candidates for one-way group actions no longer stand, due to progress both on classical algor
We propose an approach for fast random number generation based on homemade optical physical unclonable functions (PUFs). The optical PUF is illuminated with input laser wavefront of continuous modulation to obtain different speckle patterns. Random n
Information security is of great importance for modern society with all things connected. Physical unclonable function (PUF) as a promising hardware primitive has been intensively studied for information security. However, the widely investigated sil