ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray spectra of the Fe-L complex

80   0   0.0 ( 0 )
 نشر من قبل Liyi Gu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hitomi results on the Perseus cluster lead to improvements in our knowledge of atomic physics which are crucial for the precise diagnostic of hot astrophysical plasma observed with high-resolution X-ray spectrometers. However, modeling uncertainties remain, both within but especially beyond Hitomis spectral window. A major challenge in spectral modeling is the Fe-L spectrum, which is basically a complex assembly of n>2 to n=2 transitions of Fe ions in different ionization states, affected by a range of atomic processes such as collisional excitation, resonant excitation, radiative recombination, dielectronic recombination, and innershell ionization. In this paper we perform a large-scale theoretical calculation on each of the processes with the flexible atomic code (FAC), focusing on ions of Fe XVII to Fe XXIV that form the main body of the Fe-L complex. The new data are found to be consistent within 20% with the recent individual R-matrix calculations for the main Fe-L lines. By further testing the new FAC calculations with the high-quality RGS data from 15 elliptical galaxies and galaxy clusters, we note that the new model gives systematically better fits than the current SPEX v3.04 code, and the mean Fe abundance decreases by 12%, while the O/Fe ratio increases by 16% compared with the results from the current code. Comparing the FAC fit results to those with the R-matrix calculations, we find a temperature-dependent discrepancy of up to ~10% on the Fe abundance between the two theoretical models. Further dedicated tests with both observed spectra and targeted laboratory measurements are needed to resolve the discrepancies, and ultimately, to get the atomic data ready for the next high-resolution X-ray spectroscopy mission.



قيم البحث

اقرأ أيضاً

The Hitomi results for the Perseus cluster have shown that accurate atomic models are essential to the success of X-ray spectroscopic missions, and just as important as knowledge on instrumental calibration and astrophysical modeling. Preparing the m odels requires a multifaceted approach, including theoretical calculations, laboratory measurements, and calibration using real observations. In a previous paper, we presented a calculation of the electron impact cross sections on the transitions forming the Fe-L complex. In the present work, we systematically test the calculation against cross sections of ions measured in an electron beam ion trap experiment. A two-dimensional analysis in the electron beam energies and X-ray photon energies is utilized to disentangle radiative channels following dielectronic recombination, direct electron-impact excitation, and resonant excitation processes in the experimental data. The data calibrated through laboratory measurements are further fed into global modeling of the Chandra grating spectrum of Capella. We investigate and compare the fit quality, as well as sensitivity of the derived physical parameters to the underlying atomic data and the astrophysical plasma modeling. We further list the potential areas of disagreement between the observation and the present calculations, which in turn calls for renewed efforts in theoretical calculations and targeted laboratory measurements.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the g ravity and rotation of the central black hole. The absorption edges in the spectra suffer severe energy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.
NuSTAR observatory, with its 3 - 78 keV broadband spectral coverage, enables the detections of the high-energy cutoff in a number of active galaxies, including several individual radio loud ones. In this work we present systematic and uniform analyse s of 55 NuSTAR spectra for a large sample of 28 radio galaxies, 20 of which are FR II galaxies. We perform spectral fitting to measure the high energy cut-off $E_{cut}$, photon index $Gamma$, reflection factor R and Fe K$alpha$ line equivalent width. Measurements of $E_{cut}$ are given for 13 sources, and lower limits for the rest. We find those $E_{cut}$ non-detections could primarily be attributed to the obviously smaller net photon counts in their spectra. This indicates that the NuSTAR spectra of the majority of our sample are dominated by the thermal corona emission, and the $E_{cut}$ distribution of the sample is indistinguishable from that of a radio quiet one in literature. The flatter NuSTAR spectra we observed, comparing with radio quiet sources, are thus unlikely due to jet contamination. The radio galaxies also show weaker X-ray reflection (both in R and Fe K$alpha$ line EW) comparing with radio quiet ones. Combining with the radio quiet sample we see a correlation between R and EW, but with considerably large scatter. Notably, the radio loud and quiet sources appear to follow a common $Gamma$ - R correlation trend, supporting the outflowing corona model for both populations in which higher bulk outflowing velocity yields weaker reflection and flatter X-ray slope.
Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line energy with the pulsar luminosity. At high luminosities, these variations are often associated with the onset and growth of the accretion column, which is believed to be the origin of the observed emission and of the cyclotron lines. However, this scenario inevitably implies large gradient of the magnetic field strength within the line-forming region, which makes the formation of the observed line-like features problematic. Moreover, the observed variation of the cyclotron line energy is much smaller than could be anticipated for the corresponding luminosity changes. We argue here that a more physically realistic situation is that the cyclotron line forms when the radiation emitted by the accretion column is reflected from the neutron star surface, where the gradient of the magnetic field strength is significantly smaller. We develop here the reflection model and apply it to explain the observed variations of the cyclotron line energy in a bright X-ray pulsar V 0332+53 over a wide range of luminosities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا