ترغب بنشر مسار تعليمي؟ اضغط هنا

TOI-1749: an M dwarf with a Trio of Planets including a Near-Resonant Pair

103   0   0.0 ( 0 )
 نشر من قبل Akihiko Fukui
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of one super-Earth- (TOI-1749b) and two sub-Neptune-sized planets (TOI-1749c and TOI-1749d) transiting an early M dwarf at a distance of 100~pc, which were first identified as planetary candidates using data from the TESS photometric survey. We have followed up this system from the ground by means of multiband transit photometry, adaptive-optics imaging, and low-resolution spectroscopy, from which we have validated the planetary nature of the candidates. We find that TOI-1749b, c, and d have orbital periods of 2.39, 4.49, and 9.05 days, and radii of 1.4, 2.1, and 2.5 $R_oplus$, respectively. We also place 95% confidence upper limits on the masses of 57, 14, and 15 $M_oplus$ for TOI-1749b, c, and d, respectively, from transit timing variations. The periods, sizes, and tentative masses of these planets are in line with a scenario in which all three planets initially had a hydrogen envelope on top of a rocky core, and only the envelope of the innermost planet has been stripped away by photoevaporation and/or core-powered mass loss mechanisms. These planets are similar to other planetary trios found around M dwarfs, such as TOI-175b,c,d and TOI-270b,c,d, in the sense that the outer pair has a period ratio within 1% of 2. Such a characteristic orbital configuration, in which an additional planet is located interior to a near 2:1 period-ratio pair, is relatively rare around FGK dwarfs.

قيم البحث

اقرأ أيضاً

TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P=11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light cu rves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hours. Radial velocity follow-up with FEROS, HARPS and PFS confirms the planetary nature of the transiting candidate (a$_{rm b}$ = 0.096 $pm$ 0.002 au, m$_{rm b}$ = 0.98 $pm$ 0.06 M$_{rm Jup}$), and dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a$_{rm c}$ = 0.155 $pm$ 0.003 au, m$_{rm c}$= $0.37 pm 0.10$ M$_{rm Jup}$) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M$_odot$, a radius of 0.79 R$_odot$, and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 MMR, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
We use TESS, Spitzer, ground-based light curves and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity ti me series to measure the mass, radius, and orbital parameters of the candidate. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, $V = 14.2$ mag, $J = 10.3$ mag) is characterized by its M2V spectral type with $mathrm{M}_star=0.420pm 0.010$ M$_odot$, $mathrm{R}_star = 0.420pm 0.013$ R$_odot$, and $mathrm{T}_{mathrm{eff}} = 3514pm 57$ K, and is located at a distance $d=46.16 pm 0.03$ pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of $1.977143 pm 3times 10^{-6}$ days, a planetary radius of $5.25 pm 0.17$ $mathrm{R}_oplus$, and a mass of $23.6 pm 3.3$ $mathrm{M}_oplus$ implying a mean density of $rho_mathrm{p} = 0.91 pm 0.15$ [g cm$^{-3}$]. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M type star to date. It is also a resident of the so-called Neptunian desert and a promising candidate for atmospheric characterisation using the James Webb Space Telescope.
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf ($d=22$ pc, $M_star = 0.39$ M$_odot$, $R_star = 0.38$ R$_odot$), which hosts three transiting planets that were recently discovered using data from the Transiting Exopla net Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 days. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be $1.58 pm 0.26$, $6.15 pm 0.37$, and $4.78 pm 0.43$ M$_oplus$, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the `radius valley -- a region in the radius-period diagram with relatively few members, which has been interpreted as a consequence of atmospheric photo-evaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf ($T_mathrm{eff} < 4000$ K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photo-evaporation and core-powered mass loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
TOI-216 hosts a pair of warm, large exoplanets discovered by the TESS Mission. These planets were found to be in or near the 2:1 resonance, and both of them exhibit transit timing variations (TTVs). Precise characterization of the planets masses and radii, orbital properties, and resonant behavior can test theories for the origins of planets orbiting close to their stars. Previous characterization of the system using the first six sectors of TESS data suffered from a degeneracy between planet mass and orbital eccentricity. Radial velocity measurements using HARPS, FEROS, and PFS break that degeneracy, and an expanded TTV baseline from TESS and an ongoing ground-based transit observing campaign increase the precision of the mass and eccentricity measurements. We determine that TOI-216c is a warm Jupiter, TOI-216b is an eccentric warm Neptune, and that they librate in the 2:1 resonance with a moderate libration amplitude of 60 +/- 2 degrees; small but significant free eccentricity of 0.0222 +0.0005/-0.0003 for TOI-216b; and small but significant mutual inclination of 1.2-3.9 degrees (95% confidence interval). The libration amplitude, free eccentricity, and mutual inclination imply a disturbance of TOI-216b before or after resonance capture, perhaps by an undetected third planet.
We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54+-0.03 Msun) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combi ning the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from MEarth and LCOGT telescopes, we measured for the inner planet, TOI-776 b, a period of 8.25 d, a radius of 1.85+-0.13 Re, and a mass of 4.0+-0.9 Me; and for the outer planet, TOI-776 c, a period of 15.66 d, a radius of 2.02+-0.14 Re, and a mass of 5.3+-1.8 Me. The Doppler data shows one additional signal, with a period of 34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 Msun. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا