ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of vanishing Krein parameters on Delsarte designs, with applications in finite geometry

48   0   0.0 ( 0 )
 نشر من قبل Jesse Lansdown
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we show that if $theta$ is a $T$-design of an association scheme $(Omega, mathcal{R})$, and the Krein parameters $q_{i,j}^h$ vanish for some $h in T$ and all $i, j in T$, then $theta$ consists of precisely half of the vertices of $(Omega, mathcal{R})$ or it is a $T$-design, where $|T|>|T|$. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial $m$-ovoids of generalised octagons of order $(s, s^2)$ are hemisystems, and hence no $m$-ovoid of a Ree-Tits octagon can exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order $(s,s^2)$; (iii) the dual polar spaces $rm{DQ}(2d, q)$, $rm{DW}(2d-1,q)$ and $rm{DH}(2d-1,q^2)$, for $d ge 3$; (iv) the Penttila-Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila-Williford scheme in $rm{Q}^-(2n-1, q)$, $ngeqslant 3$.



قيم البحث

اقرأ أيضاً

In this paper, we study the order of a maximal clique in an amply regular graph with a fixed smallest eigenvalue by considering a vertex that is adjacent to some (but not all) vertices of the maximal clique. As a consequence, we show that if a strong ly regular graph contains a Delsarte clique, then the parameter $mu$ is either small or large. Furthermore, we obtain a cubic polynomial that assures that a maximal clique in an amply regular graph is either small or large (under certain assumptions). Combining this cubic polynomial with the claw-bound, we rule out an infinite family of feasible parameters $(v,k,lambda,mu)$ for strongly regular graphs. Lastly, we provide tables of parameters $(v,k,lambda,mu)$ for nonexistent strongly regular graphs with smallest eigenvalue $-4, -5, -6$ or $-7$.
Let $D_{v,b,k}$ denote the family of all connected block designs with $v$ treatments and $b$ blocks of size $k$. Let $dinD_{v,b,k}$. The replication of a treatment is the number of times it appears in the blocks of $d$. The matrix $C(d)=R(d)-frac{1}{ k}N(d)N(d)^top$ is called the information matrix of $d$ where $N(d)$ is the incidence matrix of $d$ and $R(d)$ is a diagonal matrix of the replications. Since $d$ is connected, $C(d)$ has $v-1$ nonzero eigenvalues $mu_1(d),...,mu_{v-1}(d)$. Let $D$ be the class of all binary designs of $D_{v,b,k}$. We prove that if there is a design $d^*inD$ such that (i) $C(d^*)$ has three distinct eigenvalues, (ii) $d^*$ minimizes trace of $C(d)^2$ over $dinD$, (iii) $d^*$ maximizes the smallest nonzero eigenvalue and the product of the nonzero eigenvalues of $C(d)$ over $dinD$, then for all $p>0$, $d^*$ minimizes $(sum_{i=1}^{v-1}mu_i(d)^{-p})^{1/p}$ over $dinD$. In the context of optimal design theory, this means that if there is a design $d^*inD$ such that its information matrix has three distinct eigenvalues satisfying the condition (ii) above and that $d^*$ is E- and D-optimal in $D$, then $d^*$ is $Phi_p$-optimal in $D$ for all $p>0$. As an application, we demonstrate the $Phi_p$-optimality of certain group divisible designs. Our proof is based on the method of KKT conditions in nonlinear programming.
We investigate equiangular lines in finite orthogonal geometries, focusing specifically on equiangular tight frames (ETFs). In parallel with the known correspondence between real ETFs and strongly regular graphs (SRGs) that satisfy certain parameter constraints, we prove that ETFs in finite orthogonal geometries are closely aligned with a modular generalization of SRGs. The constraints in our finite field setting are weaker, and all but~18 known SRG parameters on $v leq 1300$ vertices satisfy at least one of them. Applying our results to triangular graphs, we deduce that Gerzons bound is attained in finite orthogonal geometries of infinitely many dimensions. We also demonstrate connections with real ETFs, and derive necessary conditions for ETFs in finite orthogonal geometries. As an application, we show that Gerzons bound cannot be attained in a finite orthogonal geometry of dimension~5.
105 - Xizhi Liu , Dhruv Mubayi 2021
An $(n,r,s)$-system is an $r$-uniform hypergraph on $n$ vertices such that every pair of edges has an intersection of size less than $s$. Using probabilistic arguments, R{o}dl and v{S}iv{n}ajov{a} showed that for all fixed integers $r> s ge 2$, there exists an $(n,r,s)$-system with independence number $Oleft(n^{1-delta+o(1)}right)$ for some optimal constant $delta >0$ only related to $r$ and $s$. We show that for certain pairs $(r,s)$ with $sle r/2$ there exists an explicit construction of an $(n,r,s)$-system with independence number $Oleft(n^{1-epsilon}right)$, where $epsilon > 0$ is an absolute constant only related to $r$ and $s$. Previously this was known only for $s>r/2$ by results of Chattopadhyay and Goodman
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا