ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving the Delsarte bound

251   0   0.0 ( 0 )
 نشر من قبل Jongyook Park
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the order of a maximal clique in an amply regular graph with a fixed smallest eigenvalue by considering a vertex that is adjacent to some (but not all) vertices of the maximal clique. As a consequence, we show that if a strongly regular graph contains a Delsarte clique, then the parameter $mu$ is either small or large. Furthermore, we obtain a cubic polynomial that assures that a maximal clique in an amply regular graph is either small or large (under certain assumptions). Combining this cubic polynomial with the claw-bound, we rule out an infinite family of feasible parameters $(v,k,lambda,mu)$ for strongly regular graphs. Lastly, we provide tables of parameters $(v,k,lambda,mu)$ for nonexistent strongly regular graphs with smallest eigenvalue $-4, -5, -6$ or $-7$.



قيم البحث

اقرأ أيضاً

In this paper we show that if $theta$ is a $T$-design of an association scheme $(Omega, mathcal{R})$, and the Krein parameters $q_{i,j}^h$ vanish for some $h in T$ and all $i, j in T$, then $theta$ consists of precisely half of the vertices of $(Omeg a, mathcal{R})$ or it is a $T$-design, where $|T|>|T|$. We then apply this result to various problems in finite geometry. In particular, we show for the first time that nontrivial $m$-ovoids of generalised octagons of order $(s, s^2)$ are hemisystems, and hence no $m$-ovoid of a Ree-Tits octagon can exist. We give short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick generalised quadrangles of order $(s,s^2)$; (iii) the dual polar spaces $rm{DQ}(2d, q)$, $rm{DW}(2d-1,q)$ and $rm{DH}(2d-1,q^2)$, for $d ge 3$; (iv) the Penttila-Williford scheme. In the process of (iv), we also consider a natural generalisation of the Penttila-Williford scheme in $rm{Q}^-(2n-1, q)$, $ngeqslant 3$.
In analogy with the Singleton defect for classical codes, we propose a definition of rank defect for Delsarte rank-metric codes. We characterize codes whose rank defect and dual rank defect are both zero, and prove that the rank distribution of such codes is determined by their parameters. This extends a result by Delsarte on the rank distribution of MRD codes. In the general case of codes of positive defect, we show that the rank distribution is determined by the parameters of the code, together the number of codewords of small rank. Moreover, we prove that if the rank defect of a code and its dual are both one, and the dimension satisfies a divisibility condition, then the number of minimum-rank codewords and dual minimum-rank codewords is the same. Finally, we discuss how our results specialize to Gabidulin codes.
For a non-negative integer $sle |V(G)|-3$, a graph $G$ is $s$-Hamiltonian if the removal of any $kle s$ vertices results in a Hamiltonian graph. Given a connected simple graph $G$ that is not isomorphic to a path, a cycle, or a $K_{1,3}$, let $delta( G)$ denote the minimum degree of $G$, let $h_s(G)$ denote the smallest integer $i$ such that the iterated line graph $L^{i}(G)$ is $s$-Hamiltonian, and let $ell(G)$ denote the length of the longest non-closed path $P$ in which all internal vertices have degree 2 such that $P$ is not both of length 2 and in a $K_3$. For a simple graph $G$, we establish better upper bounds for $h_s(G)$ as follows. begin{equation*} h_s(G)le left{ begin{aligned} & ell(G)+1, &&mbox{ if }delta(G)le 2 mbox{ and }s=0; & widetilde d(G)+2+lceil lg (s+1)rceil, &&mbox{ if }delta(G)le 2 mbox{ and }sge 1; & 2+leftlceillgfrac{s+1}{delta(G)-2}rightrceil, && mbox{ if } 3ledelta(G)le s+2; & 2, &&{rm otherwise}, end{aligned} right. end{equation*} where $widetilde d(G)$ is the smallest integer $i$ such that $delta(L^i(G))ge 3$. Consequently, when $s ge 5$, this new upper bound for the $s$-hamiltonian index implies that $h_s(G) = o(ell(G)+s+1)$ as $s to infty$. This sharpens the result, $h_s(G)leell(G)+s+1$, obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785].
Let $G_{m,n,k} = mathbb{Z}_m ltimes_k mathbb{Z}_n$ be the split metacyclic group, where $k$ is a unit modulo $n$. We derive an upper bound for the diameter of $G_{m,n,k}$ using an arithmetic parameter called the textit{weight}, which depends on $n$, $k$, and the order of $k$. As an application, we show how this would determine a bound on the diameter of an arbitrary metacyclic group.
We study the accuracy of triangulation in multi-camera systems with respect to the number of cameras. We show that, under certain conditions, the optimal achievable reconstruction error decays quadratically as more cameras are added to the system. Fu rthermore, we analyse the error decay-rate of major state-of-the-art algorithms with respect to the number of cameras. To this end, we introduce the notion of consistency for triangulation, and show that consistent reconstruction algorithms achieve the optimal quadratic decay, which is asymptotically faster than some other methods. Finally, we present simulations results supporting our findings. Our simulations have been implemented in MATLAB and the resulting code is available in the supplementary material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا