ترغب بنشر مسار تعليمي؟ اضغط هنا

Discontinuity in charge radii for copper and indium isotopes

82   0   0.0 ( 0 )
 نشر من قبل Rong An
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The systematic trend in charge radii along isotopic chain is of great interest due to its distinctive aspect at the nucleon-shell closure and the odd-even staggering (OES) behavior. In this work, the modified root mean square (rms) charge radius formula to phenomenally account for the formation of neutron-proton short-range correlations (np-SRCs) is firstly extended to study the heavier odd-$Z$ copper and indium isotopic chains. The parabolic-like shape of rms charge radii can be remarkably reproduced between two strong closure shells. In addition, the OES and abrupt changes in the slope of the rms charge radii across $N=50$ and $82$ shell closure are also identified evidently, but the odd-even oscillation is slightly overestimated for cooper isotopes. This means the np-SRCs play an indispensable role to determine the fine structures of nuclear charge radii along isotopic chain quantitatively.



قيم البحث

اقرأ أيضاً

The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopi c chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than the trend of their even-neutron neighbours suggests. This OES effect varies with the number of protons and neutrons and poses a significant challenge for nuclear theory [5-7]. Here, we examine this problem with new measurements of the charge radii of short-lived copper isotopes up to the very exotic $^{78}$Cu $(Z=29, N=49)$, produced at only 20 ions/s, using the highly-sensitive Collinear Resonance Ionisation Spectroscopy (CRIS) method at ISOLDE-CERN. Due to the presence of a single proton outside of the closed Z=28 shell, these measurements provide crucial insights into the single-particle proton structure and how this affects the charge radii. We observe an unexpected reduction in the OES for isotopes approaching the $N=50$ shell gap. To describe the data, we applied models based on nuclear Density Functional Theory [2,8] (DFT) and ab-initio Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG) theory [9,10]. Through these comparisons, we demonstrate a relation between the global behavior of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects due to the odd neutron, naturally emerge from the VS-IMSRG calculations.
We compute the charge radii of even-mass neon and magnesium isotopes from neutron number N = 8 to the dripline. Our calculations are based on nucleon-nucleon and three-nucleon potentials from chiral effective field theory that include delta isobars. These potentials yield an accurate saturation point and symmetry energy of nuclear matter. We use the coupled-cluster method and start from an axially symmetric reference state. Binding energies and two-neutron separation energies largely agree with data and the dripline in neon is accurate. The computed charge radii have an estimated uncertainty of about 2-3% and are accurate for many isotopes where data exist. Finer details such as isotope shifts, however, are not accurately reproduced. Chiral potentials correctly yield the subshell closure at N = 14 and also a decrease in charge radii at N = 8 (observed in neon and predicted for magnesium). They yield a continued increase of charge radii as neutrons are added beyond N = 14 yet underestimate the large increase at N = 20 in magnesium.
A unified theoretical model reproducing charge radii of known atomic nuclei plays an essential role to make extrapolations in the regions of unknown nuclear size. Recently developed new ansatz which phenomenally takes into account the neutron-proton short-range correlations (np-SRCs) can describe the discontinuity properties and odd-even staggering (OES) effect of charge radii along isotopic chains remarkably well. In this work, we further review the modified rms charge radii formula in the framework of relativistic mean field (RMF) theory. The charge radii are calculated along various isotopic chains that include the nuclei featuring the $N=50$ and $82$ magic shells. Our results suggest that RMF with and without considering correction term give almost similar trend of nuclear size for some isotopic chains with open proton shell, especially the shrink phenomena of charge radii at strong neutron closed shells and the OES behaviors. This suggests that the np-SRCs has almost no influence for some nuclei due to the strong coupling between different levels around Fermi surface. The weakening OES behavior of nuclear charge radii is observed generally at completely filled neutron shells and this may be proposed as a signature of magic indicator.
We apply the recently proposed RMF(BCS)* ansatz to study the charge radii of the potassium isotopic chain up to $^{52}$K. It is shown that the experimental data can be reproduced rather well, qualitatively similar to the Fayans nuclear density functi onal theory, but with a slightly better description of the odd-even staggerings (OES). Nonetheless, both methods fail for $^{50}$K and to a lesser extent for $^{48,52}$K. It is shown that if these nuclei are deformed with a $beta_{20}approx-0.2$, then one can obtain results consistent with experiments for both charge radii and spin-parities. We argue that beyond mean field studies are needed to properly describe the charge radii of these three nuclei, particularly for $^{50}$K.
We present the first ab initio calculations for open-shell nuclei past the tin isotopic line, focusing on Xe isotopes as well as doubly-magic Sn isotopes. We show that, even for moderately hard interactions, it is possible to obtain meaningful predic tions and that the NNLOsat chiral interaction predicts radii and charge density distributions close to the experiment. We then make a new prediction for ${}^{100}$Sn. This paves the way for ab initio studies of exotic charge density distributions at the limit of the present ab initio mass domain, where experimental data is becoming available. The present study closes the gap between the largest isotopes reachable by ab initio methods and the smallest exotic nuclei accessible to electron scattering experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا