ﻻ يوجد ملخص باللغة العربية
The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than the trend of their even-neutron neighbours suggests. This OES effect varies with the number of protons and neutrons and poses a significant challenge for nuclear theory [5-7]. Here, we examine this problem with new measurements of the charge radii of short-lived copper isotopes up to the very exotic $^{78}$Cu $(Z=29, N=49)$, produced at only 20 ions/s, using the highly-sensitive Collinear Resonance Ionisation Spectroscopy (CRIS) method at ISOLDE-CERN. Due to the presence of a single proton outside of the closed Z=28 shell, these measurements provide crucial insights into the single-particle proton structure and how this affects the charge radii. We observe an unexpected reduction in the OES for isotopes approaching the $N=50$ shell gap. To describe the data, we applied models based on nuclear Density Functional Theory [2,8] (DFT) and ab-initio Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG) theory [9,10]. Through these comparisons, we demonstrate a relation between the global behavior of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects due to the odd neutron, naturally emerge from the VS-IMSRG calculations.
A unified theoretical model reproducing charge radii of known atomic nuclei plays an essential role to make extrapolations in the regions of unknown nuclear size. Recently developed new ansatz which phenomenally takes into account the neutron-proton
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CE
Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particul
The systematic trend in charge radii along isotopic chain is of great interest due to its distinctive aspect at the nucleon-shell closure and the odd-even staggering (OES) behavior. In this work, the modified root mean square (rms) charge radius form
We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time w