ﻻ يوجد ملخص باللغة العربية
The Higgs bosons and the top quark decay into rich and diverse final states, containing both light and heavy quarks, gluons, photons as well as W and Z bosons. The precise identification and reconstruction of these final states at the FCC-ee relies on the capability of the detector to provide excellent flavour tagging, jet energy and angular resolution, and global kinematic event reconstruction. Excellent flavour tagging performance requires low material vertex and tracking detectors, and advanced machine learning (ML) techniques as successfully employed in LHC experiments. In addition, the Z pole run will provide abundant samples of heavy flavour partons that can be used for calibration of the tagging algorithms. For the reconstruction of jets, leptons and missing energy, particle-flow algorithms are crucial to explore the full potential of the highly granular tracking and calorimeter systems, and give access to excellent energy-momentum resolution and precise identification of heavy bosons in their hadronic decays. This enables, among many other key elements, the reconstruction of Higgsstrahlung processes with leptonically and hadronically decaying Z bosons, and an almost background-free identification of top quark pair events. Exploiting the full available kinematic constraints together with exclusive jet clustering algorithms will allow for the optimisation of global event reconstruction with kinematic fitting techniques.
With centre-of-mass energies covering the Z pole, the WW threshold, the HZ production, and the top-pair threshold, the FCC-ee offers unprecedented possibilities to measure the properties of the four heaviest particles of the Standard Model (the Higgs
High precision experimental measurements of the properties of the Higgs boson at $sim$ 125 GeV as well as electroweak precision observables such as the W -boson mass or the effective weak leptonic mixing angle are expected at future $e^+e^-$ collider
The prospects for electroweak precision measurements at the Future Circular Collider with electron-positron beams (FCC-ee) are discussed. The Z mass and width, as well as the value of the electroweak mixing angle, can be measured with very high preci
Due to the high anticipated experimental precision at the Future Circular Collider FCC-ee (or other proposed $e^+e^-$ colliders, such as ILC, CLIC, or CEPC) for electroweak and Higgs-boson precision measurements, theoretical uncertainties may have, i
It is well-known that the Heisenberg-Euler-Schwinger effective Lagrangian predicts that a vacuum with a strong static electromagnetic field turns birefringent. We propose a scheme that can be implemented at the planned FCC-ee, to measure the nonlinea