ﻻ يوجد ملخص باللغة العربية
Recently, minimal linear codes have been extensively studied due to their applications in secret sharing schemes, two-party computations, and so on. Constructing minimal linear codes violating the Ashikhmin-Barg condition and determining their weight distributions have been an interesting research topic in coding theory and cryptography. In this paper, basing on exponential sums and Krawtchouk polynomials, we first prove that $g_{(m,k)}$ in cite{Heng-Ding-Zhou}, which is the characteristic function of some subset in $mathbb{F}_3^m$, can be generalized to be $f{(m,k)}$ for obtaining a minimal linear code violating the Ashikhmin-Barg condition; secondly, we employ $overline{g}_{(m,k)}$ to construct a class of ternary minimal linear codes violating the Ashikhmin-Barg condition, whose minimal distance is better than that of codes in cite{Heng-Ding-Zhou}.
As an important coding scheme in modern distributed storage systems, locally repairable codes (LRCs) have attracted a lot of attentions from perspectives of both practical applications and theoretical research. As a major topic in the research of LRC
We present new constructions of codes for asymmetric channels for both binary and nonbinary alphabets, based on methods of generalized code concatenation. For the binary asymmetric channel, our methods construct nonlinear single-error-correcting code
It is an important task to construct quantum maximum-distance-separable (MDS) codes with good parameters. In the present paper, we provide six new classes of q-ary quantum MDS codes by using generalized Reed-Solomon (GRS) codes and Hermitian construc
Maximum distance separable (MDS) codes are optimal where the minimum distance cannot be improved for a given length and code size. Twisted Reed-Solomon codes over finite fields were introduced in 2017, which are generalization of Reed-Solomon codes.
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code