ﻻ يوجد ملخص باللغة العربية
It is an important task to construct quantum maximum-distance-separable (MDS) codes with good parameters. In the present paper, we provide six new classes of q-ary quantum MDS codes by using generalized Reed-Solomon (GRS) codes and Hermitian construction. The minimum distances of our quantum MDS codes can be larger than q/2+1 Three of these six classes of quantum MDS codes have longer lengths than the ones constructed in [1] and [2], hence some of their results can be easily derived from ours via the propagation rule. Moreover, some known quantum MDS codes of specific lengths can be seen as special cases of ours and the minimum distances of some known quantum MDS codes are also improved as well.
Maximum distance separable (MDS) codes are optimal where the minimum distance cannot be improved for a given length and code size. Twisted Reed-Solomon codes over finite fields were introduced in 2017, which are generalization of Reed-Solomon codes.
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code
Let $p$ be a prime and let $q$ be a power of $p$. In this paper, by using generalized Reed-Solomon (GRS for short) codes and extended GRS codes, we construct two new classes of quantum maximum-distance- separable (MDS) codes with parameters [ [[tq, t
In this paper, we present three new classes of $q$-ary quantum MDS codes utilizing generalized Reed-Solomon codes satisfying Hermitian self-orthogonal property. Among our constructions, the minimum distance of some $q$-ary quantum MDS codes can be bi
Systematic constructions of MDS self-dual codes is widely concerned. In this paper, we consider the constructions of MDS Euclidean self-dual codes from short length. Indeed, the exact constructions of MDS Euclidean self-dual codes from short length (