ﻻ يوجد ملخص باللغة العربية
We report on the non-destructive measurement of Youngs modulus of thin-film single crystal beta gallium oxide (beta-Ga2O3) out of its nanoscale mechanical structures by measuring their fundamental mode resonance frequencies. From the measurements, we extract Youngs modulus in (100) plane, EY,(100) = 261.4+/-20.6 GPa, for beta-Ga2O3 nanoflakes synthesized by low-pressure chemical vapor deposition (LPCVD), and Youngs modulus in [010] direction, EY,[010] = 245.8+/-9.2 GPa, for beta-Ga2O3 nanobelts mechanically cleaved from bulk beta-Ga2O3 crystal grown by edge-defined film-fed growth (EFG) method. The Youngs moduli extracted directly on nanomechanical resonant device platforms are comparable to theoretical values from first-principle calculations and experimentally extracted values from bulk crystal. This study yields important quantitative nanomechanical properties of beta-Ga2O3 crystals, and helps pave the way for further engineering of beta-Ga2O3 micro/nanoelectromechanical systems (M/NEMS) and transducers.
Yttrium Iron Garnet (YIG) and bismuth (Bi) substituted YIG (Bi0.1Y2.9Fe5O12, BYG) films are grown in-situ on single crystalline Gadolinium Gallium Garnet (GGG) substrates [with (100) and (111) orientations] using pulsed laser deposition (PLD) techniq
Beta gallium oxide (beta-Ga2O3) is an emerging ultrawide band gap (4.5 - 4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. beta-Ga2O3 thin films
We explore mechanical properties of top down fabricated, singly clamped inverted conical GaAs nanowires. Combining nanowire lengths of 2-9 $mu$m with foot diameters of 36-935 nm yields fundamental flexural eigenmodes spanning two orders of magnitude
As spintronic devices become more and more prevalent, the desire to find Pt free materials with large spin Hall effects is increasing. Previously it was shown that Beta W, the metastable A15 structured variant of pure W, has charge-spin conversion ef
Using a time-resolved magneto-optical Kerr effect (TR-MOKE) microscope, we observed ultrafast demagnetization of inverse-spinel-type NiCo2O4 (NCO) epitaxial thin films of the inverse spinel type ferrimagnet NCO with perpendicular magnetic anisotropy.