ﻻ يوجد ملخص باللغة العربية
In most cases, to observe quantized Hall plateaux, an external magnetic field is applied in intrinsic magnetic topological insulators $mathrm{MnBi_2Te_4}$. Nevertheless, whether the nonzero Chern number ($C eq 0$) phase is a quantum anomalous Hall (QAH) state, or a quantum Hall (QH) state, or a mixing state of both is still a puzzle, especially for the recently observed $C=2$ phase [Deng textit{et al}., Science textbf{367}, 895 (2020)]. In this Letter, we propose a physical picture based on the Anderson localization to understand the observed Hall plateaux in disordered $mathrm{MnBi_2Te_4}$. Rather good consistency between the experimental and numerical results confirms that the bulk states are localized in the absence of a magnetic field and a QAH edge state emerges with $C=1$. However, under a strong magnetic field, the lowest Landau band formed with the localized bulk states, survives disorder, together with the QAH edge state, leading to a $C=2$ phase. Eventually, we present a phase diagram of a disordered $mathrm{MnBi_2Te_4}$ which indicates more coexistence states of QAH and QH to be verified by future experiments.
The magnetotransport properties of disordered ferromagnetic kagome layers are investigated numerically. We show that a large domain-wall magnetoresistance or negative magnetoresistance can be realized in kagome layered materials (e.g. Fe$_3$Sn$_2$, C
Quantum anomalous Hall insulator (QAH)/$s$-wave superconductor (SC) hybrid systems are known to be an ideal platform for realizing two-dimensional topological superconductors with chiral Majorana edge modes. In this paper we study QAH/unconventional
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean pa
Quantum Hall stripe phases near half-integer filling factors $ u ge 9/2$ were predicted by Hartree-Fock (HF) theory and confirmed by discoveries of giant resistance anisotropies in high-mobility two-dimensional electron gases. A theory of such anisot
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua