ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust magnetotransport in disordered ferromagnetic kagome layers with quantum anomalous Hall effect

117   0   0.0 ( 0 )
 نشر من قبل Koji Kobayashi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetotransport properties of disordered ferromagnetic kagome layers are investigated numerically. We show that a large domain-wall magnetoresistance or negative magnetoresistance can be realized in kagome layered materials (e.g. Fe$_3$Sn$_2$, Co$_3$Sn$_2$S$_2$, and Mn$_3$Sn), which show the quantum anomalous Hall effect. The kagome layers show a strong magnetic anisotropy and a large magnetoresistance depending on their magnetic texture. These domain-wall magnetoresistances are expected to be robust against disorder and observed irrespective of the domain-wall thickness, in contrast to conventional domain-wall magnetoresistance in ferromagnetic metals.

قيم البحث

اقرأ أيضاً

196 - P. Woelfle , K. A. Muttalib 2005
The anomalous Hall effect in disordered band ferromagnets is considered in the framework of quantum transport theory. A microscopic model of electrons in a random potential of identical impurities including spin-orbit coupling is used. The Hall condu ctivity is calculated from the Kubo formula for both, the skew scattering and the side-jump mechanisms. The recently discussed Berry phase induced Hall current is also evaluated within the model. The effect of strong impurity scattering is analyzed and it is found to affect the ratio of the non-diagonal (Hall) and diagonal components of the conductivity as well as the relative importance of different mechanisms.
104 - Enke Liu , Yan Sun , Nitesh Kumar 2017
Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate Co3Sn2S2 with a quasi-two-dimensiona l crystal structure consisting of stacked Kagome lattices. This lattice provides an excellent platform for hosting exotic quantum topological states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl fermions close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 S cm-1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagome-lattice structure and the long-range out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.
69 - Atsuo Shitade 2016
We investigate the electric and thermal transport properties in a disordered Weyl ferromagnet on an equal footing by using the Keldysh formalism in curved spacetime. In particular, we calculate the anomalous thermal Hall conductivity, which consists of the Kubo formula and the heat magnetization, without relying on the Wiedemann-Franz law. We take nonmagnetic impurities into account within the self-consistent $T$-matrix approximation and reproduce the Wiedemann-Franz law for the extrinsic Fermi-surface and intrinsic Fermi-sea terms, respectively. This is the first step towards a unified theory of the anomalous Hall effect at finite temperature, where we should take into account both disorder and interactions.
We report a proximity-driven large anomalous Hall effect in all-telluride heterostructures consisting of ferromagnetic insulator Cr2Ge2Te6 and topological insulator (Bi,Sb)2Te3. Despite small magnetization in the (Bi,Sb)2Te3 layer, the anomalous Hall conductivity reaches a large value of 0.2e2/h in accord with a ferromagnetic response of the Cr2Ge2Te6. The results show that the exchange coupling between the surface state of the topological insulator and the proximitized Cr2Ge2Te6 layer is effective and strong enough to open the sizable exchange gap in the surface state.
Instability of quantum anomalous Hall (QAH) effect has been studied as function of electric current and temperature in ferromagnetic topological insulator thin films. We find that a characteristic current for the breakdown of the QAH effect is roughl y proportional to the Hall-bar width, indicating that Hall electric field is relevant to the breakdown. We also find that electron transport is dominated by variable range hopping (VRH) at low temperatures. Combining the current and temperature dependences of the conductivity in the VRH regime, the localization length of the QAH state is evaluated to be about 5 $mu$m. The long localization length suggests a marginally insulating nature of the QAH state due to a large number of in-gap states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا