ﻻ يوجد ملخص باللغة العربية
During periods of strong geomagnetic activity, intense currents flow from the magnetosphere into the high-latitude E-region ionosphere along geomagnetic field lines, B. In this region, collisions between the plasma and neutral molecules allow currents to flow across B, enabling the entire magnetosphere-ionosphere current system to close. These same currents cause strong DC electric fields in the E-region ionosphere where they drive plasma instabilities, including the Farley-Buneman instability (FBI). These instabilities give rise to small-scale plasma turbulence that modifies the large-scale ionospheric conductance that, in turn, affects the evolution of the entire near-Earth plasma environment. Also, during geomagnetic storms, precipitating electrons of high energies, $gtrsim$ 5 keV, frequently penetrate down to the same regions where intense currents and E fields develop. This research examines the effects of precipitating electrons on the generation of the FBI and shows that, under many common conditions, it can easily suppress the instability in a predictable manner. Therefore, we expect precipitation to exert a significant feedback on the magnetosphere by preventing the elevated conductivity caused by FBI driven turbulence. This suppression should be taken into account in global modeling of the magnetosphere-ionosphere coupling.
A study of the role of microinstabilities at the reconnection separatrix can play in heating the electrons during the transition from inflow to outflow is being presented. We find that very strong flow shears at the separatrix layer lead to counterst
The analysis of the wave content inside a perpendicular bow shock indicates that heating of ions is related to the Lower-Hybrid-Drift (LHD) instability, and heating of electrons to the Electron-Cyclotron-Drift (ECD) instability. Both processes repres
The effect of rough structures on the electron emission under electron impact between 10 eV and 2 keV is investigated with a new version of the low energy electromagnetic model of GEANT4 (MicroElec). The inelastic scattering is modeled, thanks to the
We have used the high-resolution data of the Magnetospheric Multiscale (MMS) mission dayside phase to identify twenty-one previously unreported encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversal
Magnrtic flux ropes (MFRs) play a crucial role during magnetic reconnection. They are believed to be primarily generated by tearing mode instabilities in the electron diffusion region (EDR). However, they have never been observed inside the EDR. Here