ﻻ يوجد ملخص باللغة العربية
We investigate the system constituted by a polarizable atom near a nanosphere under the influence of an external electrostatic field, showing that the attractive dispersive force between them can be overcome by the electrostatic interaction. Therefore, in addition to the advantageous possibility of actively tuning the resultant force with an external agent without the requirement of physical contact, this force may also become repulsive. We analyze this situation in different physical regimes of distance and explore the interaction of different atoms with both metallic and dielectric spheres, discussing which cases are easier to control. Furthermore, our results reveal that these repulsive forces can be achieved with feasible field intensities in the laboratory.
We study the dark excitons behavior as a coherent physical two-level spin system (qubit) using an external magnetic field in the Faraday configuration. Our studies are based on polarization-sensitive intensity autocorrelation measurements of the opti
Using first-principle calculations, we demonstrate several approaches to manipulate Dzyaloshinskii-Moriya Interaction (DMI) in ultrathin magnetic films. First, we find that DMI is significantly enhanced when the ferromagnetic (FM) layer is sandwiched
We study the geometric and electronic structures of silicene monolayer using density functional theory based calculations. The electronic structures of silicene show that it is a semi-metal and the charge carriers in silicene behave like massless Dir
In this paper cross-relaxation between nitrogen-vacancy (NV) centers and substitutional nitrogen in a diamond crystal was studied. It was demonstrated that optically detected magnetic resonance signals (ODMR) can be used to measure these signals succ
We consider an optomechanical system comprising a single cavity mode and a dense spectrum of acoustic modes and solve for the quantum dynamics of initial cavity mode Fock (i.e., photon number) superposition states and thermal acoustic states. The opt