ﻻ يوجد ملخص باللغة العربية
Perturbation theory of large-scale structures of the Universe at next-to-leading order and next-to-next-to-leading order provides us with predictions of cosmological statistics at sub-percent level in the mildly non-linear regime. Its use to infer cosmological parameters from spectroscopic surveys, however, is hampered by the computational cost of making predictions for a large number of parameters. In order to reduce the running time of the codes, we present a fast scheme in the context of the regularized perturbation theory approach and applied it to power spectra at 2-loop level and bispectra at 1-loop level, including the impact of binning. This method utilizes a Taylor expansion of the power spectrum as a functional of the linear power spectrum around fiducial points at which costly direct evaluation of perturbative diagrams is performed and tabulated. The computation of the predicted spectra for arbitrary cosmological parameters then requires only one-dimensional integrals that can be done within a few minutes. It makes this method suitable for Markov chain Monte-Carlo analyses for cosmological parameter inference.
With the advent of a new generation of cosmological experiments that will provide high-precision measurements of the cosmic microwave background (CMB) and galaxies in the large-scale structure, it is pertinent to examine the potential of performing a
We investigate the statistical power of higher-order statistics and cross-correlation statistics to constrain the primordial non-Gaussianity from the imaging surveys. In particular, we consider the local-type primordial non- Gaussianity and discuss h
The statistical distribution of galaxies is a powerful probe to constrain cosmological models and gravity. In particular the matter power spectrum $P(k)$ brings information about the cosmological distance evolution and the galaxy clustering together.
The Chern-Simons term, through which the cosmic Axion-like field couples to the electromagnetic field, has the effect to rotate CMB polarization directions and to break the CPT symmetry. This rotation will change the CMB power spectra, no matter isot
We present ECLIPSE (Efficient Cmb poLarization and Intensity Power Spectra Estimator), an optimized implementation of the Quadratic Maximum Likelihood (QML) method for the estimation of the power spectra of the Cosmic Microwave Background (CMB). This