ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial mutations of Newton-Okounkov polytopes arising from plabic graphs

87   0   0.0 ( 0 )
 نشر من قبل Yusuke Nakajima
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that the coordinate ring of the Grassmannian has a cluster structure, which is induced from the combinatorial structure of a plabic graph. A plabic graph is a certain bipartite graph described on the disk, and there is a family of plabic graphs giving a cluster structure of the same Grassmannian. Such plabic graphs are related by the operation called square move which can be considered as the mutation in cluster theory. By using a plabic graph, we also obtain the Newton-Okounkov polytope which gives a toric degeneration of the Grassmannian. The purposes of this article is to survey these phenomena and observe the behavior of Newton-Okounkov polytopes under the operation called the combinatorial mutation of polytopes. In particular, we reinterpret some operations defined for Newton-Okounkov polytopes using the combinatorial mutation.

قيم البحث

اقرأ أيضاً

Matching fields were introduced by Sturmfels and Zelevinsky to study certain Newton polytopes and more recently have been shown to give rise to toric degenerations of various families of varieties. Whenever a matching field gives rise to a toric dege neration, the associated polytope of the toric variety coincides with the matching field polytope. We study combinatorial mutations, which are analogues of cluster mutations for polytopes, of matching field polytopes and show that the property of giving rise to a toric degeneration of the Grassmannians, is preserved by mutation. Moreover the polytopes arising through mutations are Newton-Okounkov bodies for the Grassmannians with respect to certain full-rank valuations. We produce a large family of such polytopes, extending the family of so-called block diagonal matching fields.
The main result of this note is that the toric degenerations of flag varieties associated to string polytopes and certain Bott-Samelson resolutions of flag varieties fit into a commutative diagram which gives a resolution of singularities of singular toric varieties corresponding to string polytopes. Our main tool is a result of Anderson which shows that the toric degenerations arising from Newton-Okounkov bodies are functorial in an appropriate sense. We also use results of Fujita which show that Newton-Okounkov bodies of Bott-Samelson varieties with respect to a certain valuation $ u_{max}$ coincide with generalized string polytopes, as well as previous results by the authors which explicitly describe the Newton-Okounkov bodies of Bott-Samelson varieties with respect to a different valuation $ u_{min}$ in terms of Grossberg-Karshon twisted cubes. A key step in our argument is that, under a technical condition, these Newton-Okounkov bodies coincide.
Let $X$ be a smooth irreducible complex algebraic variety of dimension $n$ and $L$ a very ample line bundle on $X$. Given a toric degeneration of $(X,L)$ satisfying some natural technical hypotheses, we construct a deformation ${J_s}$ of the complex structure on $X$ and bases $mathcal{B}_s$ of $H^0(X,L, J_s)$ so that $J_0$ is the standard complex structure and, in the limit as $s to infty$, the basis elements approach dirac-delta distributions centered at Bohr-Sommerfeld fibers of a moment map associated to $X$ and its toric degeneration. The theory of Newton-Okounkov bodies and its associated toric degenerations shows that the technical hypotheses mentioned above hold in some generality. Our results significantly generalize previous results in geometric quantization which prove independence of polarization between Kahler quantizations and real polarizations. As an example, in the case of general flag varieties $X=G/B$ and for certain choices of $lambda$, our result geometrically constructs a continuous degeneration of the (dual) canonical basis of $V_{lambda}^*$ to a collection of dirac delta functions supported at the Bohr-Sommerfeld fibres corresponding exactly to the lattice points of a Littelmann-Berenstein-Zelevinsky string polytope $Delta_{underline{w}_0}(lambda) cap mathbb{Z}^{dim(G/B)}$.
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo sition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton--Okounkov bodies coincide with the Feigin--Fourier--Littelmann--Vinberg polytopes in type A.
A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycl es corresponds to the set-theoretic intersection of faces (whenever the latter are transverse). We explain the general framework and survey particular realizations of this approach in types A, B and C.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا