ترغب بنشر مسار تعليمي؟ اضغط هنا

Blind Source Separation in Polyphonic Music Recordings Using Deep Neural Networks Trained via Policy Gradients

61   0   0.0 ( 0 )
 نشر من قبل Johannes Leuschner
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for the blind separation of sounds of musical instruments in audio signals. We describe the individual tones via a parametric model, training a dictionary to capture the relative amplitudes of the harmonics. The model parameters are predicted via a U-Net, which is a type of deep neural network. The network is trained without ground truth information, based on the difference between the model prediction and the individual time frames of the short-time Fourier transform. Since some of the model parameters do not yield a useful backpropagation gradient, we model them stochastically and employ the policy gradient instead. To provide phase information and account for inaccuracies in the dictionary-based representation, we also let the network output a direct prediction, which we then use to resynthesize the audio signals for the individual instruments. Due to the flexibility of the neural network, inharmonicity can be incorporated seamlessly and no preprocessing of the input spectra is required. Our algorithm yields high-quality separation results with particularly low interference on a variety of different audio samples, both acoustic and synthetic, provided that the sample contains enough data for the training and that the spectral characteristics of the musical instruments are sufficiently stable to be approximated by the dictionary.



قيم البحث

اقرأ أيضاً

Blind source separation, i.e. extraction of independent sources from a mixture, is an important problem for both artificial and natural signal processing. Here, we address a special case of this problem when sources (but not the mixing matrix) are kn own to be nonnegative, for example, due to the physical nature of the sources. We search for the solution to this problem that can be implemented using biologically plausible neural networks. Specifically, we consider the online setting where the dataset is streamed to a neural network. The novelty of our approach is that we formulate blind nonnegative source separation as a similarity matching problem and derive neural networks from the similarity matching objective. Importantly, synaptic weights in our networks are updated according to biologically plausible local learning rules.
Automatic meeting analysis comprises the tasks of speaker counting, speaker diarization, and the separation of overlapped speech, followed by automatic speech recognition. This all has to be carried out on arbitrarily long sessions and, ideally, in a n online or block-online manner. While significant progress has been made on individual tasks, this paper presents for the first time an all-neural approach to simultaneous speaker counting, diarization and source separation. The NN-based estimator operates in a block-online fashion and tracks speakers even if they remain silent for a number of time blocks, thus learning a stable output order for the separated sources. The neural network is recurrent over time as well as over the number of sources. The simulation experiments show that state of the art separation performance is achieved, while at the same time delivering good diarization and source counting results. It even generalizes well to an unseen large number of blocks.
Many applications of single channel source separation (SCSS) including automatic speech recognition (ASR), hearing aids etc. require an estimation of only one source from a mixture of many sources. Treating this special case as a regular SCSS problem where in all constituent sources are given equal priority in terms of reconstruction may result in a suboptimal separation performance. In this paper, we tackle the one source separation problem by suitably modifying the orthodox SCSS framework and focus only on one source at a time. The proposed approach is a generic framework that can be applied to any existing SCSS algorithm, improves performance, and scales well when there are more than two sources in the mixture unlike most existing SCSS methods. Additionally, existing SCSS algorithms rely on fine hyper-parameter tuning hence making them difficult to use in practice. Our framework takes a step towards automatic tuning of the hyper-parameters thereby making our method better suited for the mixture to be separated and thus practically more useful. We test our framework on a neural network based algorithm and the results show an improved performance in terms of SDR and SAR.
153 - Peter Li , Jiyuan Qian , Tian Wang 2015
Traditional methods to tackle many music information retrieval tasks typically follow a two-step architecture: feature engineering followed by a simple learning algorithm. In these shallow architectures, feature engineering and learning are typically disjoint and unrelated. Additionally, feature engineering is difficult, and typically depends on extensive domain expertise. In this paper, we present an application of convolutional neural networks for the task of automatic musical instrument identification. In this model, feature extraction and learning algorithms are trained together in an end-to-end fashion. We show that a convolutional neural network trained on raw audio can achieve performance surpassing traditional methods that rely on hand-crafted features.
In this paper, we propose a simple yet effective method for multiple music source separation using convolutional neural networks. Stacked hourglass network, which was originally designed for human pose estimation in natural images, is applied to a mu sic source separation task. The network learns features from a spectrogram image across multiple scales and generates masks for each music source. The estimated mask is refined as it passes over stacked hourglass modules. The proposed framework is able to separate multiple music sources using a single network. Experimental results on MIR-1K and DSD100 datasets validate that the proposed method achieves competitive results comparable to the state-of-the-art methods in multiple music source separation and singing voice separation tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا