ترغب بنشر مسار تعليمي؟ اضغط هنا

Multitask Multi-database Emotion Recognition

73   0   0.0 ( 0 )
 نشر من قبل Manh Tu Vu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we introduce our submission to the 2nd Affective Behavior Analysis in-the-wild (ABAW) 2021 competition. We train a unified deep learning model on multi-databases to perform two tasks: seven basic facial expressions prediction and valence-arousal estimation. Since these databases do not contains labels for all the two tasks, we have applied the distillation knowledge technique to train two networks: one teacher and one student model. The student model will be trained using both ground truth labels and soft labels derived from the pretrained teacher model. During the training, we add one more task, which is the combination of the two mentioned tasks, for better exploiting inter-task correlations. We also exploit the sharing videos between the two tasks of the AffWild2 database that is used in the competition, to further improve the performance of the network. Experiment results shows that the network have achieved promising results on the validation set of the AffWild2 database. Code and pretrained model are publicly available at https://github.com/glmanhtu/multitask-abaw-2021

قيم البحث

اقرأ أيضاً

144 - Jing Chen 2020
The study of affective computing in the wild setting is underpinned by databases. Existing multimodal emotion databases in the real-world conditions are few and small, with a limited number of subjects and expressed in a single language. To meet this requirement, we collected, annotated, and prepared to release a new natural state video database (called HEU Emotion). HEU Emotion contains a total of 19,004 video clips, which is divided into two parts according to the data source. The first part contains videos downloaded from Tumblr, Google, and Giphy, including 10 emotions and two modalities (facial expression and body posture). The second part includes corpus taken manually from movies, TV series, and variety shows, consisting of 10 emotions and three modalities (facial expression, body posture, and emotional speech). HEU Emotion is by far the most extensive multi-modal emotional database with 9,951 subjects. In order to provide a benchmark for emotion recognition, we used many conventional machine learning and deep learning methods to evaluate HEU Emotion. We proposed a Multi-modal Attention module to fuse multi-modal features adaptively. After multi-modal fusion, the recognition accuracies for the two parts increased by 2.19% and 4.01% respectively over those of single-modal facial expression recognition.
When recognizing emotions, subtle nuances of emotion displays often cause ambiguity or uncertainty in emotion perception. Unfortunately, the ambiguity or uncertainty cannot be reflected in hard emotion labels. Emotion predictions with uncertainty can be useful for risk controlling, but they are relatively scarce in current deep models for emotion recognition. To address this issue, we propose to apply the multi-generational self-distillation algorithm to emotion recognition task towards better uncertainty estimation performance. We firstly use deep ensembles to capture uncertainty, as an approximation to Bayesian methods. Secondly, the deep ensemble provides soft labels to its student models, while the student models can learn from the uncertainty embedded in those soft labels. Thirdly, we iteratively train deep ensembles to further improve the performance of emotion recognition and uncertainty estimation. In the end, our algorithm results in a single student model that can estimate in-domain uncertainty and a student ensemble that can detect out-of-domain samples. We trained our Efficient Multitask Emotion Networks (EMENet) on the Aff-wild2 dataset, and conducted extensive experiments on emotion recognition and uncertainty estimation. Our algorithm gives more reliable uncertainty estimates than Temperature Scaling and Monte Carol Dropout.
Deep learning models trained on audio-visual data have been successfully used to achieve state-of-the-art performance for emotion recognition. In particular, models trained with multitask learning have shown additional performance improvements. Howev er, such multitask models entangle information between the tasks, encoding the mutual dependencies present in label distributions in the real world data used for training. This work explores the disentanglement of multimodal signal representations for the primary task of emotion recognition and a secondary person identification task. In particular, we developed a multitask framework to extract low-dimensional embeddings that aim to capture emotion specific information, while containing minimal information related to person identity. We evaluate three different techniques for disentanglement and report results of up to 13% disentanglement while maintaining emotion recognition performance.
Human emotions can be inferred from facial expressions. However, the annotations of facial expressions are often highly noisy in common emotion coding models, including categorical and dimensional ones. To reduce human labelling effort on multi-task labels, we introduce a new problem of facial emotion recognition with noisy multi-task annotations. For this new problem, we suggest a formulation from the point of joint distribution match view, which aims at learning more reliable correlations among raw facial images and multi-task labels, resulting in the reduction of noise influence. In our formulation, we exploit a new method to enable the emotion prediction and the joint distribution learning in a unified adversarial learning game. Evaluation throughout extensive experiments studies the real setups of the suggested new problem, as well as the clear superiority of the proposed method over the state-of-the-art competing methods on either the synthetic noisy labeled CIFAR-10 or practical noisy multi-task labeled RAF and AffectNet. The code is available at https://github.com/sanweiliti/noisyFER.
In our everyday lives and social interactions we often try to perceive the emotional states of people. There has been a lot of research in providing machines with a similar capacity of recognizing emotions. From a computer vision perspective, most of the previous efforts have been focusing in analyzing the facial expressions and, in some cases, also the body pose. Some of these methods work remarkably well in specific settings. However, their performance is limited in natural, unconstrained environments. Psychological studies show that the scene context, in addition to facial expression and body pose, provides important information to our perception of peoples emotions. However, the processing of the context for automatic emotion recognition has not been explored in depth, partly due to the lack of proper data. In this paper we present EMOTIC, a dataset of images of people in a diverse set of natural situations, annotated with their apparent emotion. The EMOTIC dataset combines two different types of emotion representation: (1) a set of 26 discrete categories, and (2) the continuous dimensions Valence, Arousal, and Dominance. We also present a detailed statistical and algorithmic analysis of the dataset along with annotators agreement analysis. Using the EMOTIC dataset we train different CNN models for emotion recognition, combining the information of the bounding box containing the person with the contextual information extracted from the scene. Our results show how scene context provides important information to automatically recognize emotional states and motivate further research in this direction. Dataset and code is open-sourced and available at: https://github.com/rkosti/emotic and link for the peer-reviewed published article: https://ieeexplore.ieee.org/document/8713881

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا