ﻻ يوجد ملخص باللغة العربية
In this work, we study the Schrodinger equation $ipartial_tpsi=-Deltapsi+eta(t)sum_{j=1}^Jdelta_{x=a_j(t)}psi$ on $L^2((0,1),C)$ where $eta:[0,T]longrightarrow R^+$ and $a_j:[0,T]longrightarrow (0,1)$, $j=1,...,J$. We show how to permute the energy associated to different eigenmodes of the Schrodinger equation via suitable choice of the functions $eta$ and $a_j$. To the purpose, we mime the control processes introduced in [17] for a very similar equation where the Dirac potential is replaced by a smooth approximation supported in a neighborhood of $x=a(t)$. We also propose a Galerkin approximation that we prove to be convergent and illustrate the control process with some numerical simulations.
In this paper, we consider the following three dimensional defocusing cubic nonlinear Schrodinger equation (NLS) with partial harmonic potential begin{equation*}tag{NLS} ipartial_t u + left(Delta_{mathbb{R}^3 }-x^2 right) u = |u|^2 u, quad u|_{t=
New exact analytical bound-state solutions of the radial Dirac equation in 3+1 dimensions for two sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generali
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav
In this article, we study the decay of the solutions of Schrodinger equations in the exterior of an obstacle. The main situations we are interested in are the general case (no non-trapping assumptions) or some weakly trapping situations
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and