ترغب بنشر مسار تعليمي؟ اضغط هنا

Polar Fluctuations Lead to Extensile Nematic Behavior in Confluent Tissues

154   0   0.0 ( 0 )
 نشر من قبل Chiu Fan Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How can a collection of motile cells, each generating contractile nematic stresses in isolation, become an extensile nematic at the tissue-level? Understanding this seemingly contradictory experimental observation, which occurs irrespective of whether the tissue is in the liquid or solid states, is not only crucial to our understanding of diverse biological processes, but is also of fundamental interest to soft matter and many-body physics. Here, we resolve this cellular to tissue level disconnect in the small fluctuation regime by using analytical theories based on hydrodynamic descriptions of confluent tissues, in both liquid and solid states. Specifically, we show that a collection of microscopic constituents with no inherently nematic extensile forces can exhibit active extensile nematic behavior when subject to polar fluctuating forces. We further support our findings by performing cell level simulations of minimal models of confluent tissues.

قيم البحث

اقرأ أيضاً

Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.
Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within th e framework of dense active matter, and argue that persistent uncoordinated cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We obtain this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based cell models, soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly match when tissue-level reorganisation occurs on times longer than the persistence time of cell motility. Our analytical model quantitatively matches measured velocity correlation functions over more than a decade with a single fitting parameter.
When a block made of an elastomer is subjected to large shear, its surface remains flat. When a block of biological soft tissue is subjected to large shear, it is likely that its surface in the plane of shear will buckle (apparition of wrinkles). One factor that distinguishes soft tissues from rubber-like solids is the presence -- sometimes visible to the naked eye -- of oriented collagen fibre bundles, which are stiffer than the elastin matrix into which they are embedded but are nonetheless flexible and extensible. Here we show that the simplest model of isotropic nonlinear elasticity, namely the incompressible neo-Hookean model, suffers surface instability in shear only at tremendous amounts of shear, i.e., above 3.09, which corresponds to a 72 degrees angle of shear. Next we incorporate a family of parallel fibres in the model and show that the resulting solid can be either reinforced or strongly weakened with respect to surface instability, depending on the angle between the fibres and the direction of shear, and depending on the ratio E/mu between the stiffness of the fibres and that of the matrix. For this ratio we use values compatible with experimental data on soft tissues. Broadly speaking, we find that the surface becomes rapidly unstable when the shear takes place against the fibres, and that as E/mu increases, so does the sector of angles where early instability is expected to occur.
The present work presents a density-functional microscopic model of soft biological tissue. The model was based on a prototype molecular structure from experimentally resolved collagen peptide residues and water clusters and has the objective to capt ure some well-known experimental features of soft tissues. It was obtained the optimized geometry, binding and coupling energies and dipole moments. The results concerning the stability of the confined water clusters, the water-water and water-collagen interactions within the CLBM framework were successfully correlated to some important trends observed experimentally in inflammatory tissues.
Recent experiments on monolayers of spindle-like cells plated on adhesive stripe-shaped domains have provided a convincing demonstration that certain types of collective phenomena in epithelia are well described by active nematic hydrodynamics. While recovering some of the hallmark predictions of this framework, however, these experiments have also revealed a number of unexpected features that could be ascribed to the existence of chirality over length scales larger than the typical size of a cell. In this article we elaborate on the microscopic origin of chiral stresses in nematic cell monolayers and investigate how chirality affects the motion of topological defects, as well as the collective motion in stripe-shaped domains. We find that chirality introduces a characteristic asymmetry in the collective cellular flow, from which the ratio between chiral and non-chiral active stresses can be inferred by particle-image-velocimetry measurements. Furthermore, we find that chirality changes the nature of the spontaneous flow transition under confinement and that, for specific anchoring conditions, the latter has the structure of an imperfect pitchfork bifurcation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا