ﻻ يوجد ملخص باللغة العربية
Recent experiments on monolayers of spindle-like cells plated on adhesive stripe-shaped domains have provided a convincing demonstration that certain types of collective phenomena in epithelia are well described by active nematic hydrodynamics. While recovering some of the hallmark predictions of this framework, however, these experiments have also revealed a number of unexpected features that could be ascribed to the existence of chirality over length scales larger than the typical size of a cell. In this article we elaborate on the microscopic origin of chiral stresses in nematic cell monolayers and investigate how chirality affects the motion of topological defects, as well as the collective motion in stripe-shaped domains. We find that chirality introduces a characteristic asymmetry in the collective cellular flow, from which the ratio between chiral and non-chiral active stresses can be inferred by particle-image-velocimetry measurements. Furthermore, we find that chirality changes the nature of the spontaneous flow transition under confinement and that, for specific anchoring conditions, the latter has the structure of an imperfect pitchfork bifurcation.
Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within th
It is known that mechanical interactions couple a cell to its neighbors, enabling a feedback loop to regulate tissue growth. However, the interplay between cell-cell adhesion strength, local cell density and force fluctuations in regulating cell prol
How can a collection of motile cells, each generating contractile nematic stresses in isolation, become an extensile nematic at the tissue-level? Understanding this seemingly contradictory experimental observation, which occurs irrespective of whethe
Monolayers of anisotropic cells exhibit long-ranged orientational order and topological defects. During the development of organisms, orientational order often influences morphogenetic events. However, the linkage between the mechanics of cell monola
Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spont